网络通信原理及流程

2023-05-16

网络通信原理

1.1 互联网的本质就是一系列的网络协议

       一台硬设有了操作系统,然后装上软件你就可以正常使用了,然而你也只能自己使用像这样,每个人都拥有一台自己的机器,然而彼此孤立吗,如何能大家一起玩耍

                                          

                                                              

其实两台计算机之间通信与两个人打电话之间通信的原理是一样的(中国有很多地区,不同的地区有不同的方言,为了全中国人都可以听懂,大家统一讲普通话)普通话属于中国国内人与人之间通信的标准,那如果是两个国家的人交流呢?问题是,你不可能要求一个人/计算机掌握全世界的语言/标准,于是有了世界统一的通信标准:英语

                              

 

结论:

英语成为世界上所有人通信的统一标准,如果把计算机看成分布于世界各地的人,那么连接两台计算机之间的internet实际上就是

一系列统一的标准,这些标准称之为互联网协议,互联网的本质就是一系列的协议,总称为‘互联网协议’(Internet Protocol Suite).

互联网协议的功能:定义计算机如何接入internet,以及接入internet的计算机通信的标准。

1.2 osi七层协议

互联网协议按照功能不同分为osi七层或tcp/ip五层或tcp/ip四层

                          

每层运行常见物理设备

                           

OSI七层协议数据传输的封包与解包过程

                                 

1.3 tcp/ip五层模型讲解

我们将应用层,表示层,会话层并作应用层,从tcp/ip五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议

就理解了整个互联网通信的原理。

首先,用户感知到的只是最上面一层应用层,自上而下每层都依赖于下一层,所以我们从最下一层开始切入,比较好理解

每层都运行特定的协议,越往上越靠近用户,越往下越靠近硬件。

1.3.1 物理层

物理层由来:上面提到,孤立的计算机之间要想一起玩,就必须接入internet,言外之意就是计算机之间必须完成组网

                                                  

物理层功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0

1.3.2 数据链路层

数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思

数据链路层的功能:定义了电信号的分组方式

以太网协议:

早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet

ethernet规定

  • 一组电信号构成一个数据包,叫做‘帧’
  • 每一数据帧分成:报头head和数据data两部分
       head                       data                             

 

 

head包含:(固定18个字节)

  • 发送者/源地址,6个字节
  • 接收者/目标地址,6个字节
  • 数据类型,6个字节

data包含:(最短46字节,最长1500字节)

  • 数据包的具体内容

head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送

mac地址:

head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址

mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)

                                 

广播:

有了mac地址,同一网络内的两台主机就可以通信了(一台主机通过arp协议获取另外一台主机的mac地址)ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼。

                                        

1.3.3 网络层

网络层由来:有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了,问题是世界范围的互联网是由

一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,

这就不仅仅是效率低的问题了,这会是一种灾难。

                         

上图结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,

就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关

网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址

IP协议:

  • 规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
  • 范围0.0.0.0-255.255.255.255
  • 一个ip地址通常写成四段十进制数,例:172.16.10.1

ip地址分成两部分

  • 网络部分:标识子网
  • 主机部分:标识主机

注意:单纯的ip地址段只是标识了ip地址的种类,从网络部分或主机部分都无法辨识一个ip所处的子网

例:172.16.10.1与172.16.10.2并不能确定二者处于同一子网

子网掩码

所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

 

知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

 

比如,已知IP地址172.16.10.1和172.16.10.2的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,

172.16.10.1:10101100.00010000.00001010.000000001

255255.255.255.0:11111111.11111111.11111111.00000000

AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0

 

172.16.10.2:10101100.00010000.00001010.000000010

255255.255.255.0:11111111.11111111.11111111.00000000

AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0

结果都是172.16.10.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

ip数据包

ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分

head:长度为20到60字节

data:最长为65,515字节。

而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

以太网头               ip 头                                    ip数据                                

 

 

 ARP协议

arp协议由来:计算机通信基本靠吼,即广播的方式,所有上层的包到最后都要封装上以太网头,然后通过以太网协议发送,在谈及以太网协议时候,我门了解到

通信是基于mac的广播方式实现,计算机在发包时,获取自身的mac是容易的,如何获取目标主机的mac,就需要通过arp协议

arp协议功能:广播的方式发送数据包,获取目标主机的mac地址

 

协议工作方式:每台主机ip都是已知的

例如:主机172.16.10.10/24访问172.16.10.11/24

一:首先通过ip地址和子网掩码区分出自己所处的子网

场景数据包地址
同一子网目标主机mac,目标主机ip
不同子网网关mac,目标主机ip

 

 

 

二:分析172.16.10.10/24与172.16.10.11/24处于同一网络(如果不是同一网络,那么下表中目标ip为172.16.10.1,通过arp获取的是网关的mac)

 源mac目标mac源ip目标ip数据部分
发送端主机发送端macFF:FF:FF:FF:FF:FF172.16.10.10/24172.16.10.11/24数据

 

 

三:这个包会以广播的方式在发送端所处的自网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac。

1.3.4 传输层

传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音,等多个应用程序,

那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号。

传输层功能:建立端口到端口的通信

补充:端口范围0-65535,0-1023为系统占用端口

tcp协议:

可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

以太网头ip 头              tcp头              数据                                                    

 

udp协议:

不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

以太网头ip头                     udp头                           数据                                           

 

 

tcp报文

                                                        

tcp三次握手和四次挥手

                                         

1.3.5 应用层

应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开发的,大家都可以开发自己的应用程序,数据多种多样,必须规定好数据的组织形式 

应用层功能:规定应用程序的数据格式。

例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。

                                          

1.3.6 socket

我们知道两个进程如果需要进行通讯最基本的一个前提能能够唯一的标示一个进程,在本地进程通讯中我们可以使用PID来唯一标示一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几率很大,这时候我们需要另辟它径了,我们知道IP层的ip地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样我们可以利用ip地址+协议+端口号唯一标示网络中的一个进程。

能够唯一标示网络中的进程后,它们就可以利用socket进行通信了,什么是socket呢?我们经常把socket翻译为套接字,socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用已实现进程在网络中通信。

                                            

socket起源于UNIX,在Unix一切皆文件哲学的思想下,socket是一种"打开—读/写—关闭"模式的实现,服务器和客户端各自维护一个"文件",在建立连接打开后,可以向自己文件写入内容供对方读取或者读取对方内容,通讯结束时关闭文件。

1.3.7 小结

 

                                           

数据传输动图如下:

                                                    

 

三.网络通信实现

想实现网络通信,每台主机需具备四要素

  • 本机的IP地址
  • 子网掩码
  • 网关的IP地址
  • DNS的IP地址

获取这四要素分两种方式

1.静态获取

即手动配置

2.动态获取

通过dhcp获取

以太网头ip头udp头dhcp数据包

 

 

(1)最前面的”以太网标头”,设置发出方(本机)的MAC地址和接收方(DHCP服务器)的MAC地址。前者就是本机网卡的MAC地址,后者这时不知道,就填入一个广播地址:FF-FF-FF-FF-FF-FF。

 

(2)后面的”IP标头”,设置发出方的IP地址和接收方的IP地址。这时,对于这两者,本机都不知道。于是,发出方的IP地址就设为0.0.0.0,接收方的IP地址设为255.255.255.255。

 

(3)最后的”UDP标头”,设置发出方的端口和接收方的端口。这一部分是DHCP协议规定好的,发出方是68端口,接收方是67端口。

 

这个数据包构造完成后,就可以发出了。以太网是广播发送,同一个子网络的每台计算机都收到了这个包。因为接收方的MAC地址是FF-FF-FF-FF-FF-FF,看不出是发给谁的,所以每台收到这个包的计算机,还必须分析这个包的IP地址,才能确定是不是发给自己的。当看到发出方IP地址是0.0.0.0,接收方是255.255.255.255,于是DHCP服务器知道”这个包是发给我的”,而其他计算机就可以丢弃这个包。

 

接下来,DHCP服务器读出这个包的数据内容,分配好IP地址,发送回去一个”DHCP响应”数据包。这个响应包的结构也是类似的,以太网标头的MAC地址是双方的网卡地址,IP标头的IP地址是DHCP服务器的IP地址(发出方)和255.255.255.255(接收方),UDP标头的端口是67(发出方)和68(接收方),分配给请求端的IP地址和本网络的具体参数则包含在Data部分。

 

新加入的计算机收到这个响应包,于是就知道了自己的IP地址、子网掩码、网关地址、DNS服务器等等参数

四.网络通信流程

1.本机获取

  • 本机的IP地址:192.168.1.100
  • 子网掩码:255.255.255.0
  • 网关的IP地址:192.168.1.1
  • DNS的IP地址:8.8.8.8

2.打开浏览器,想要访问Google,在地址栏输入了网址:www.google.com。

3.dns协议(基于udp协议)

              

13台根dns:

A.root-servers.net198.41.0.4美国
B.root-servers.net192.228.79.201美国(另支持IPv6)
C.root-servers.net192.33.4.12法国
D.root-servers.net128.8.10.90美国
E.root-servers.net192.203.230.10美国
F.root-servers.net192.5.5.241美国(另支持IPv6)
G.root-servers.net192.112.36.4美国
H.root-servers.net128.63.2.53美国(另支持IPv6)
I.root-servers.net192.36.148.17瑞典
J.root-servers.net192.58.128.30美国
K.root-servers.net193.0.14.129英国(另支持IPv6)
L.root-servers.net198.32.64.12美国
M.root-servers.net202.12.27.33日本(另支持IPv6)

域名定义:http://jingyan.baidu.com/article/1974b289a649daf4b1f774cb.html

顶级域名:以.com,.net,.org,.cn等等属于国际顶级域名,根据目前的国际互联网域名体系,国际顶级域名分为两类:类别顶级域名(gTLD)和地理顶级域名(ccTLD)两种。类别顶级域名是以"COM"、"NET"、"ORG"、"BIZ"、"INFO"等结尾的域名,均由国外公司负责管理。地理顶级域名是以国家或地区代码为结尾的域名,如"CN"代表中国,"UK"代表英国。地理顶级域名一般由各个国家或地区负责管理。

二级域名:二级域名是以顶级域名为基础的地理域名,比喻中国的二级域有,.com.cn,.net.cn,.org.cn,.gd.cn等.子域名是其父域名的子域名,比喻父域名是abc.com,子域名就是www.abc.com或者*.abc.com.
一般来说,二级域名是域名的一条记录,比如alidiedie.com是一个域名,www.alidiedie.com是其中比较常用的记录,一般默认是用这个,但是类似*.alidiedie.com的域名全部称作是alidiedie.com的二级.

 

举例:

HTTP部分的内容,类似于下面这样:

GET / HTTP/1.1
Host: www.google.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 6.1) ……
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: zh-CN,zh;q=0.8
Accept-Charset: GBK,utf-8;q=0.7,*;q=0.3
Cookie: … …

我们假定这个部分的长度为4960字节,它会被嵌在TCP数据包之中。

TCP协议

TCP数据包需要设置端口,接收方(Google)的HTTP端口默认是80,发送方(本机)的端口是一个随机生成的1024-65535之间的整数,假定为51775。

TCP数据包的标头长度为20字节,加上嵌入HTTP的数据包,总长度变为4980字节。

 

IP协议

然后,TCP数据包再嵌入IP数据包。IP数据包需要设置双方的IP地址,这是已知的,发送方是192.168.1.100(本机),接收方是172.194.72.105(Google)。

IP数据包的标头长度为20字节,加上嵌入的TCP数据包,总长度变为5000字节。

 

以太网协议

最后,IP数据包嵌入以太网数据包。以太网数据包需要设置双方的MAC地址,发送方为本机的网卡MAC地址,接收方为网关192.168.1.1的MAC地址(通过ARP协议得到)。

以太网数据包的数据部分,最大长度为1500字节,而现在的IP数据包长度为5000字节。因此,IP数据包必须分割成四个包。因为每个包都有自己的IP标头(20字节),所以四个包的IP数据包的长度分别为1500、1500、1500、560。

                           

服务器端响应

经过多个网关的转发,Google的服务器172.194.72.105,收到了这四个以太网数据包。

根据IP标头的序号,Google将四个包拼起来,取出完整的TCP数据包,然后读出里面的”HTTP请求”,接着做出”HTTP响应”,再用TCP协议发回来。

本机收到HTTP响应以后,就可以将网页显示出来,完成一次网络通信。

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

网络通信原理及流程 的相关文章

  • Ubuntu16.04下PX4 开发环境配置

    PX4 Ubuntu1604 开发环境配置 问题1 依赖错误及安装时404错误问题2 安装基于NuttX的硬件出错问题3 编译报错问题4 QT配置问题 PX4 Ubuntu16 04 开发环境配置 看到官网有详细介绍 xff08 官网安装说
  • [px4仿真]单独启动编译和Gazebo仿真器

    This article shows how to starting Gazebo and PX4 separately 按照官方教程并没有成功 中文教程和英文教程都有错误 xff0c 应该如下 span class hljs built
  • [px4仿真]px4的STIL仿真中添加向下的摄像头

    后面发现这样改有问题 xff0c 正确的修改方法参考这条提交记录 xff1a https github com TokyoClod sitl gazebo commit e61e6e46a665804f072474b2b1b085fb701
  • VISP库IBVS仿真

    示例程序1 tutorial ibvs 4pts cpp span class hljs comment example tutorial ibvs 4pts cpp span span class hljs preprocessor in
  • blender中UV贴图及导出dae文件

    设置单位meter 设置大小 按 N调出属性面板 设置 依次选择编辑模式 线框 面选择 xff1b 进入UV贴图模式 右击选中物体上表面 xff0c 按U 展开 xff1b 上方选择UV Editing模式 贴图 左下底部选择 图像 打开图
  • AprilTag视觉定位系统

    AprilTag是一个视觉基准库 xff0c 在AR xff0c 机器人 xff0c 相机校准领域广泛使用 通过特定的标志 xff08 与二维码相似 xff0c 但是降低了复杂度以满足实时性要求 xff09 xff0c 可以快速地检测标志
  • keras 多输入多输出网络

    keras中的多输入多输出网络 多输入多输出网络搭建的官网介绍 xff1a http keras cn readthedocs io en latest getting started functional API Demo span cl
  • lodash源码分析之compact中的遍历

    小时候 xff0c 乡愁是一枚小小的邮票 xff0c 我在这头 xff0c 母亲在那头 长大后 xff0c 乡愁是一张窄窄的船票 xff0c 我在这头 xff0c 新娘在那头 后来啊 xff0c 乡愁是一方矮矮的坟墓 xff0c 我在外头
  • A-Softmax的keras实现-《SphereFace: Deep Hypersphere Embedding for Face Recognition》

    A Softmax的keras实现 参考文档 xff1a https www cnblogs com heguanyou p 7503025 html 注 xff1a 主体完成 xff0c 调试中 xff0c 先行记录 xff0c 待续 已
  • AM-Softmax的keras实现: 《Additive Margin Softmax for Face Verification》

    原答案在对输入进行归一化时有错误 xff0c 另外m应该是一个固定的超参数不需要训练 xff0c 已改正 论文地址 xff1a Additive Margin Softmax for Face Verification 和L Softmax
  • 最小跳跃次数

    1 最小跳跃次数 1 最小跳跃次数 1 1 题目描述 xff1a 1 2 解题思路1 3 实现代码 出自华为实习机试第二题 xff1a 1 1 题目描述 xff1a 先输入一个数字代表数字总数 然后依次输入几个数字 xff0c 代表当前位置
  • moby、docker-ce与docker-ee的区别

    近期研究docker相关技术 xff0c 发现官网分为moby docker ce与docker ee不同板块 xff0c ce和ee版本好理解 xff0c 但2017年开始又多出个Moby xff0c 开始有点凌乱 xff0c Googl
  • AutoRun与NoDriveTypeAutoRun键值

    Autorun inf 与注册表NoDriveTypeAutoRun键值的一些说明 二进制位数 8 7 6 5 4 3 2 1 Type 1 RAMDISK CDROM REMOTE FIXED REMOVABLE NO ROOT DIR
  • Windows下编译qt-material

    Windows下编译qml material 公司新项目里选择用 QML 来做界面 xff0c 这段时间一直在学习 QML 的语法和基础组件 xff0c 限于 QML 目前不太成熟 xff0c 没有十分丰富的控件 xff0c 加上自己水平有
  • SpringSecurity是如何实现账号密码的验证登录的

    个人理解 xff1a 1 首先在 配置类中定表单登录的URL和账号密码 2 jsp表单中的url和账号秘密要与指定的名称一致 3 创建 SecurityAdmin类 xff0c 集成User类 xff0c 因为User类只包含usernam
  • HDFS入门(三)

    五 HDFS接口 xff08 一 xff09 HDFS命令行接口 HDFS命令行接口作为了解 xff0c 在这里不再赘述 xff08 二 xff09 JAVA API接口 使用URL访问hdfs 1 xff09 怎么访问 xff1f jav
  • 怎么去掉Chrome浏览器新标签页的缩略图

    每次都很烦那八个框框 xff0c 再漂亮的主题图片都被那八个缩略图框搞糟了 xff01 对吧 xff0c 应该有同感 解决办法 xff1a chrome拓展程序里下载拓展程序 Stylish 安装好之后就在拓展程序里找到它 xff0c 打开
  • 上班一个月,我的几点体会

    这篇博文其实在去年就已经在CSDN发过的 后来 xff0c 某次误操作不小心删除了 xff0c 今天找出来重新发一下 我是从3月1号开始上班的 xff0c 今天3月31号 xff0c 刚好一个月结束 xff0c 在这一个月里 xff0c 我
  • NVMe CLI 命令使用

    1 下载地址 https github com linux nvme nvme cli 2 安装 unzip nvme cli master zip cd nvme cli master zip make amp amp make inst
  • 我这一年写的博文

    总结2013 xff0c 展望2014 xff0c gt gt 我的2013年终总结 在苦与乐中成长 下面是我这一年所写的博客 xff0c 主要涉及C xff0c Net Framework xff0c SQL Server xff0c S

随机推荐

  • 我的2013年终总结——在苦与乐中成长

    写在前面 最近正好在三亚旅游 xff0c 空闲下来时 xff0c 便开始进行年终总结 由于去年年末较忙 xff0c 便错过了2012 年的年终总结 xff0c 所以本文将会对 2012 与 2013 两年一起进行总结 说说工作 学生 到 码
  • 走过2014,2015我将继续前行

    写在前面 一转眼 xff0c 一年时光就这么溜走了 在这辞旧迎新之际 xff08 这说法是不是很官方啊 xff0c 呵呵 xff01 xff09 xff0c 我将对即将过去的2014 年进行一番总结 xff0c 并对即将来临的 2015 年
  • csr867x入门之串口AT指令协议(三)

    目录 功能简介 功能实现 功能调试 功能简介 通过封装串口AT指令 xff0c 我们可以把8670作为一个蓝牙外设 xff0c 通过串口的AT指令协议与外部mcu通讯 比如当csr8670连接到pc端 xff0c 再pc端通过串口工具发送指
  • 今天了解Linux体系结构

    上一章我们了解了Linux的一些发展历史 xff0c 那么这一章我们来深入了解一下 xff0c Linux的体系及构成 Linux采用分层设计 xff0c 分层结构 xff0c 它包括 4 个层次 每层只能与相邻的层通信 xff0c 层次间
  • Ubuntu操作系统下Python多版本的安装与切换

    安装替代Python版本 打开终端 xff0c 看下系统中默认安装了按个版本的python 运行以下命令 xff1a python version 如果使用的是Ubuntu 20 04 xff0c 则默认情况下拥有的python版本3 8
  • 51单片机LCD1602液晶屏显示字符,字符串,(有)无符号整数,十六进制数,二进制数等

    1 前言 LCD1602液晶显示器是广泛使用的一种字符型液晶显示模块 液晶显示模块具有体积小 功耗低 显示内容丰富 超薄轻巧等优点 xff0c 在嵌入式应用系统中得到越来越广泛的应用 xff0c 这讲中向大家介绍的LCD1602 液晶显示模
  • 51单片机——DS1302时钟

    目录 1 前言 1 1 实验现象 2 DS1302的介绍 2 1 DS1302的引脚定义以及应用电路 2 2 DS1302内部结构 2 21 DS1302内部特殊寄存器 2 22 时序 2 3 BCD码 3 源码 3 1 main c 3
  • 编译安装GCC12.2.0

    编译安装GCC 记录一下 xff0c 免得每次到处找 安装GCC12 2 0 xff0c 其他版本一样 源码下载地址 xff1a https ftp gnu org gnu gcc 备注 xff1a 配置若有不明白的 xff0c 多用 co
  • 安装vim

    sudo apt get install vim 确认后按y就行了 vim的三种模式 1 普通模式 当vim打开的时候就直接进入普通模式 在普通模式下可以进入命令 插入模式 2 插入模式 可以通过普通模式进入插入模式 插入模式可以编辑文本
  • jetson tx2 刷机,安装 cuda、opencv 详细教程

    jetson tx2 刷机 xff0c 安装 cuda opencv 详细教程 jetson tx2 的详细介绍和用途可见官网 xff1a Nvidia jetson tx2 接下来主要说明jetson tx2 详细刷机过程以及在过程中踩过
  • PX4 编译报错问题解决方法、PX4切换固定版本编译

    PX4 Autopilot 编译报错问题解决方法 1 make 2 没有规则可制作目标 dirlinks 停止 1 1159 Generating platforms nuttx NuttX nuttx config FAILED plat
  • ubuntu 系统狠慢 或者很卡的原因

    1 涉及内存小或者虚拟SWAP分区调整问题 可以通过 系统监视器 进行查看 在UBUNTU系统里面 xff0c 并不是你的物理内存全部耗尽之后 xff0c 系统才使用swap分区 xff01 系统的swappiness设定值 xff0c 对
  • 技巧1——怎样查看linux发行版本名称和版本号?

    假如我们加入了一家新公司 xff0c 需要为开发团队安装所需要的软件并且重启服务 首先要弄清楚它们运行在什么发行版本上以及在哪个版本的系统上 xff0c 才能正确的完成后续的工作 作为一名系统管理员 xff0c 充分了解系统信息是首要的任务
  • 种群共生模型

    种群共生模型 种群共生模型 1 1 背景 1 2 参数假设 1 3 分析 1 4 模型构建 1 5 模型求解 1 6 讨论平衡点稳定性 种群共生模型 1 1 背景 在自然界中 种族的共生现象是比较普遍的 如鳄鱼与千鸟 千鸟不但在鳄鱼身上寻找
  • opendaylight学习笔记——Flows

    Flow java中 private static final String WEB NAME 61 34 Flows 34 定义了在网页中显示时的名称 private static final String WEB ID 61 34 fl
  • NB-IoT 物理层相关

    写在前面 本文作为简单说明 xff0c 详细需具体查阅文档 1 关于 PRB 的理解 RB xff08 Resource Block xff09 xff0c 用于描述某些物理信道到资源元素的映射 xff0c 它有两个概念 xff1a VRB
  • 以太网详解(一)-MAC/PHY/MII/RMII/GMII/RGMII基本介绍

    网络设备中肯定离开不MAC和PHY xff0c 本篇文章将详细介绍下以太网中一些常见术语与接口 MAC和PHY结构 从硬件角度来看以太网是由CPU xff0c MAC xff0c PHY三部分组成的 xff0c 如下图示意 xff1a 上图
  • ubuntu(linux)下smb完整搭建流程-----原来如此简单,一步到位!!!!!!

    1 查看ubuntu版本号命令 lsb release a 2 下载安装 sudo apt get insall samba FAQ 如果出现apt install时候遇到E Unable to fetch some archives ma
  • xilinx fpga xdma

    一 下载XDMA文件 输入命令 sudo git clone https github com Xilinx dma ip drivers 二 编译文件 进入xdma文件夹 xff1a cd dma ip drivers XDMA linu
  • 网络通信原理及流程

    网络通信原理 1 1 互联网的本质就是一系列的网络协议 一台硬设有了操作系统 xff0c 然后装上软件你就可以正常使用了 xff0c 然而你也只能自己使用像这样 xff0c 每个人都拥有一台自己的机器 xff0c 然而彼此孤立吗 xff0c