简单常用滤波算法C语言实现

2023-05-16

1.限幅滤波算法(程序判断滤波算法)

方法解析:

根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效,

如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。

优点:

能有效克服因偶然因素引起的脉冲干扰

缺点:

无法抑制那种周期性的干扰,平滑度差

#define A 10
char value;
char filter()
{
   char  new_value;
   new_value = get_ad();
   if ( ( new_value - value > A ) || ( value - new_value > A )
      return value;
   return new_value;
}


2.中位值滤波法

方法解析:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值

优点:

能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测参数有良好的滤波效果

缺点:

对流量,速度等快速变化的参数不宜

#define N  11
char filter()
{
   char value_buf[N];
   char count,i,j,temp;
   for ( count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   return value_buf[(N-1)/2];
}

3.算术平均滤波

方法解析:

连续取N个采样值进行平均运算,N值较大时:信号平滑度较高,但灵敏度较低

N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般12左右。

优点:

适应于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制并不适用,比较浪费RAM

#define N 12
char filter()
{
   int  sum = 0;
   for ( count=0;count<N;count++)
   {
      sum + = get_ad();
      delay();
   }
   return (char)(sum/N);


4.递推平均滤波(滑动平均滤波法)

方法解析:

把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出)。

把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:一般12.

优点:

对周期性干扰有良好的抑制作用,平滑度高,适应于高频振荡的系统

缺点:

灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差。不易消除由于脉冲干扰所引起打的采样值偏差,不适用于脉冲干扰比较严重的场合

浪费RAM

#define N 12 
char value_buf[N];
char i=0;
char filter()
{
   char count;
   int  sum=0;
   value_buf[i++] = get_ad();
   if ( i == N )   i = 0;
   for ( count=0;count<N,count++)
      sum = value_buf[count];
   return (char)(sum/N);
}

5.中位值平均滤波法(防脉冲干扰平均滤波法)

方法解析:

相当于中位值滤波+算术平均滤波,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。

N值的选取:3-14

优点:融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

缺点:

测量速度较慢,和算法平均滤波一样,浪费RAM。


#define N 12
char filter()
{
   char count,i,j;
   char value_buf[N];
   int  sum=0,temp=0;
   for  (count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   for(count=1;count<N-1;count++)
      sum += value[count];
   return (char)(sum/(N-2));
}

6一阶滞后滤波法

方法解析:

取a=0-1

本次滤波结果=(1-a)*本次采样值+a*上次滤波结果

优点:

对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合

缺点:

相位滞后,灵敏度低,滞后程度取决于a值的大小,不能消除滤波频率高于采样频率的1/2的干扰信号


#define a 50
char value;
char filter()
{
   char  new_value;
   new_value = get_ad();
   return (100-a)*value + a*new_value; 
}

7.加权递推平均滤波法

方法解析:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权

通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。

优点:

适用于有较大纯滞后时间常数的对象,和采样周期较短的系统

缺点:

 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。


#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
   char count;
   char value_buf[N];
   int  sum=0;
   for (count=0,count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (count=0,count<N;count++)
      sum += value_buf[count]*coe[count];
   return (char)(sum/sum_coe);
}


8.消抖滤波法

方法解析:

设置一个滤波计数器,将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零,如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器

优点:

对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

缺点:

对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

#define N 12
char filter()
{
   char count=0;
   char new_value;
   new_value = get_ad();
   while (value !=new_value);
   {
      count++;
      if (count>=N)   return new_value;
       delay();
      new_value = get_ad();
   }
   return value;    
}

10.低通数字滤波

解析:

低通滤波也称一阶滞后滤波,方法是第N次采样后滤波结果输出值是(1-a)乘第N次采样值加a乘上次滤波结果输出值。可见a<<1。

该方法适用于变化过程比较慢的参数的滤波的C程序函数如下:


float low_filter(float low_buf[])
{
    float sample_value;
    float X=0.01;
    sample_value=(1_X)*low_buf[1]+X*low buf[0];
    retrun(sample_value);
}













本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

简单常用滤波算法C语言实现 的相关文章

  • C++笔记--关于string, char*, char[]中的‘\0’问题(2-3)

    0 问题 const char 字符串 以 0 结尾char 字符串 以 0 结尾string 字符串 不以 0 结尾char n 61 34 string 34 当string 长度 43 0 gt n时 xff0c 会因空间不足出错st
  • 经典C++笔试题目--100(C++面向对象的特性(38-61))

    C 43 43 面向对象的特性 38 61 38 是不是一个父类写了一个virtual 函数 xff0c 如果子类覆盖它的函数不加virtual 也能实现多态 参考答案 virtual修饰符会被隐形继承的 virtual可加可不加 子类的空
  • 经典C++笔试题目--100(编程练习(比C要难)(91-100))

    编程练习 比C要难 91 100 91 请编写一个 C 函数 xff0c 该函数给出一个字节中被置 1 的位的个数 参考答案 unsigned int TestAsOne0 char log int i unsigned int num 6
  • 小四轴调试笔记

    9 22 使用dmp进行姿态解算时 由于小四轴尺寸很小 电机和6050的距离略近 电机对MPU6050的影响就会很大当然 这种情况仅发生在尺寸很小的小四轴并且使用DMP时 图为电机转速增到最大时6050的值 可见加速度和角速度都发生了剧烈变
  • [STM32]开源光流定点 四轴 PIX

    废话不多说先上图 xff1a 硬件配置 xff1a STM32F407VET6 MPU6050 VL53L0X 光流的概念是Gibson在1950年首先提出来的 它是空间运动物体在观察成像平面上的像素运动的瞬时速度 xff0c 是利用图像序
  • svn status详解

    svn 是在提交前查看本地文本和版本库里面的文件的区别 返回值有许多种具体含义如下 xff1a url 61 L abc c svn已经在 svn目录锁定了abc c M bar c bar c的内容已经在本地修改过了 M baz c ba
  • 如何应对软件需求不明确、需求频繁更改和需求的无底洞

    入职以来一直会遇到这种问题 xff0c 也许是软件行业的死穴 xff0c 任何项目如果处理不好解决不了这些问题 xff0c 就相当于得了慢性绝症 xff0c 不但项目的结局是死路 xff0c 经手项目的每 个开发人员到管理者都在经受挑战人体
  • Ubuntu 20.04换国内源 清华源 阿里源 中科大源 163源

    Ubuntu 20 04 是 Ubuntu 的第 8 个 LTS 版本 xff0c 其重大更新和改进将在 2030 年前终止 xff0c 计划于2020年 4 月 23 日发布 国内有很多Ubuntu的镜像源 xff0c 包括阿里的 网易的
  • 详解100行c11线程池 ThreadPool.h

    介绍 这个大神的100行实现c11线程池 xff0c 真的是相当简洁给力 xff0c 偶尔会在项目里面使用 xff0c 但是老实说一直是迷迷糊糊 xff0c 并不清楚具体实现细节 xff0c 现在有空学习了一波 xff0c 记录一下 xff
  • ORB特征提取匹配opencv3代码实现

    span class hljs preprocessor include lt iostream gt span span class hljs preprocessor include lt opencv2 core core hpp g
  • 利用ZeroMQ传输图片

    待传输的数据 cv Mat mat 订阅端 xff08 sub xff09 import cv2 import zmq sub port 61 span class hljs number 6666 span context 61 zmq
  • OpenStack部署工具总结

    目前感觉比较简单直观的部署工具有RDO devstack Fuel等 xff1a 1 RDO https OpenStack redhat com Quickstart REDHAT出品 xff0c 支持Redhat CentOS等系统 R
  • Python中的函数与变量讲解

    不知道大家在学习Python的时候 xff0c 有没有发现一个问题 xff0c 函数里边的变量和脚本里边的变量好像是无关的 本文今天要讲的就是Python中的函数与变量 xff0c 如果大家对于这个方面的内容有困惑 xff0c 不妨来一起学
  • Python+OpenCV静态图像读取与显示_Haar模型实现简单的人脸识别

    目的 xff1a 1 主要是熟悉一下静态图像的读取与显示 xff1b 2 然后了解下基于OpenCV安装目录下haar特征识别人脸区域 人脸特征数据 基于 tengxing007 的博客 xff1a Python 43 OpenCV 实现简
  • 富斯FS-T6 APM飞控四种飞行模式设置方法_MIX混控设置

    来源于5iMX论坛的这篇帖子 富斯FS T6 APM飞控两种飞行模式设置方法点击打开链接 但是我按照作者的设置MIX的方法 xff0c 怎么都只有三种通道 先上图吧 xff1a 1 我的混控设置 xff1a OFFSET是偏移量 xff0c
  • Netfilter笔记-02

    Netfilter说白了就是针对不同的协议 xff08 协议类型和hook节点我们上一章已经讲过 xff09 在kernel中放置了不同的hook节点 xff0c 等数据包sk buff xff0c 到来的时候 xff0c 要给hook节点
  • 如何做在短时间内搞定VR交互的核心技能?

    转 http 36kr com p 5056703 html ktm source 61 feed amp from 61 timeline 从平面到空间 xff0c 虚拟现实正在开启一场全新的交互方式的变迁 xff0c 更或者 xff0c
  • 单目视觉的运动目标跟踪定位

    转 http www leiphone com news 201704 z87wjT8j9s94tMnG html 市场上空间定位的技术方案分为单目 双目以及激光雷达三大阵营 xff0c 其中激光雷达由于成本高昂市场接受度较低 xff0c
  • 关于IP地址、网络号、主机号、子网掩码之间的关系

    IP地址类似于我们的身份证号码 国家为了唯一确定我们每个人的身份 xff0c 会为我们每个人分配一个唯一确定身份的号码 xff0c 同理 xff1a 为了确切地标识Internet xff08 互联网 xff09 中的每一台主机和路由器 x
  • Android原生编解码接口 MediaCodec 之——踩坑

    关键帧 MediaCodec 有两种方式触发输出关键帧 xff0c 一是由配置时设置的 KEY FRAME RATE 和KEY I FRAME INTERVAL参数自动触发 xff0c 二是运行过程中通过 setParameters 手动触

随机推荐

  • [xshell6过期解决方案]xshell6评估过期 如何继续使用(亲测有效) 100%成功

    过完年来上班第一天打开xshell提示评估过期了 很是尴尬 搞了老半天才弄好 下面来分享一下我的解决过程 大家严格按照下面的流程走就可以了 基本都可以成功 如果没成功 那一定是你的姿势不对 1 我之前下载的是evaluation版本 xff
  • # Ubuntu 配置自带vnc桌面共享

    Ubuntu 配置自带桌面共享 1 在setting gt gt shareing gt gt remote 选择on 如果用ubunutu直接远程连接的话已经可以了 xff0c 2 在ubuntu下使用系统自带的remmina连接 vnc
  • netconf学习-安装ncclient客户端提示'install_requires'错误

    环境说明 xff08 1 xff09 操作系统 xff1a centos7 7 xff08 2 xff09 python版本 xff1a 2 7 5 问题描述 在学习netconf的时候需要编写netconf自动化 xff0c 此时就需要用
  • Baumer工业相机堡盟工业相机使用BGAPI SDK将图像数据转换为Bitmap的几种方式(C#)(Mono)

    Baumer工业相机堡盟工业相机使用BGAPI SDK将图像数据转换为Bitmap的几种方式 xff08 C xff09 Baumer工业相机Baumer工业相机图像数据转为Bitmap的技术背景Baumer工业相机使用BGAPISDK将图
  • OpenStack版本

    OpenStack的每个主版本系列以字母表顺序 xff08 A Z xff09 命名 xff0c 以年份及当年内的排序做版本号 xff0c 从第一版的Austin xff08 2010 1 xff09 到目前最新的稳定版Liberty xf
  • PX4FLOW光流模块DIY(含部分代码讲解)

    暑假有时间整理一下以前做的东西 xff0c 发发博客 xff0c 既给网友们学习也方便自己交流 今天讲讲我两年前从github学习的PX4FLOW光流模块 光流是视觉导航的重要部分 在运动检测和许多slam技术都使用到了光流 xff0c 但
  • 一路(16)相随,一起(17)前行

    2016年对于楼主来说 xff0c 是艰难的一年 xff0c 也是幸运的一年 xff0c 我想把我的故事说给你听 xff01 迈入IT行业已经快一年了 xff0c 但是实际上真正练习的时间只有仅仅的四个多月 xff0c 之前的专业是电子方面
  • 英文突然间隔变大

    之前总是遇到一个尴尬的问题 xff0c 就是写文档的时候间距突然变大 xff0c 调整段落间距并未没有效果 xff0c 例如这种 xff1a 解决办法 xff1a Shift 43 空格
  • JAVA从入门到精通(2)

    一 Java中的关键字 1 关键字 xff1a 具有一些特殊用途的词 2 注 xff1a 在程序中应用关键词需要慎重 xff01 3 常用的关键词 xff08 举例说明 xff09 interface xff1a 接口 class 类 pu
  • myeclipse闪退的问题

    之前遇到myeclipse的闪退 xff0c 探索了之后 xff0c 找到了方法 xff0c 今天早上又遇到这种问题 xff0c 按照上次的方法尝试是没有问题的 决定和大家分享 删除 workspace xff08 工作空间 xff09 m
  • 【损失函数系列】softmax loss损失函数详解

    1 损失函数 xff1a 损失函数 xff08 loss function xff09 是用来评测模型的预测值f x 与真实值Y的相似程度 xff0c 损失函数越小 xff0c 就代表模型的鲁棒性越好 xff0c 损失函数指导模型学习 根据
  • JAVA从入门到精通(14)-- 包装类

    一 包装类 1 基本数据类型是不具备对象的特征的 xff0c 比如基本数据类型不能调用方法 功能简单 xff0c 为了让基本数据类型具备对象的特性 xff0c Java为每个基本数据类型提供了一个包装类 2 3 包装类主要提供了两大类方法
  • JAVA从入门到精通(16)-- Java版JSON入门

    一 JSON课程介绍 1 JSON是行业内使用最为广泛的数据传输格式 定义 xff1a JSON是一种与开发语言无关的 轻量级的数据格式 全称是JavaScript Object Notation 优点 xff1a 易于人的阅读和编写 xf
  • JAVA从入门到精通(17)-- GSON

    一 GSON介绍 1 介绍 xff1a GSON最早由Google提出的开源的项目 xff0c 主页在github上 xff0c 解析json 二 GSON生成JSON数据 1 加入依赖 xff0c 创建包和类 2 创建Gson对象 Man
  • JAVA从入门到精通(18)-- Servlet

    一 Servlet定义 1 现有JSP还是先有Servlet xff1f 先有的Servlet xff0c 因为JSP的前身就是Servlet 2 定义 xff1a Servlet是在服务器上运行的小程序 一个Servlet就是一个Java
  • pixhawk自学笔记之uorb学习总结

    注 xff1a 这是看过好多文章总结出来的 xff0c 转载了较多人的博客 xff0c 希望有知道原出处的人把地址留下 xff0c 我贴上来 在此谢谢各位前辈的总结 xff08 我会在后续笔记中贴出在我自己的程序中对于uorb的使用 xff
  • pixhawk自学笔记之px4程序启动顺序

    在了解px4启动之前我们需要了解一下bootloader Bootloader是在操作系统内核运行之前运行 xff0c 可以初始化硬件设备 xff0c 建立内存空间映射图等 xff0c 整个系统的加载启动任务就是完全由Bootloader来
  • PID概述以及在无人机中的应用

    PID控制是将误差信号的比例P xff0c 积分I xff0c 微分D通过线性组合构成控制量 xff0c 称之为PID控制 但是在很多情况下 xff0c 往往不一定需要三个单元 xff0c 但是比例单元是必不可少的 PID控制器难点在于参数
  • PID连续控制算法的表达式以及C语言实现

    1 数字 xff08 离散 xff09 PID控制算法的表达式 xff1a 将PID调节器离散化 xff0c 用差分方程来代替连续系统的微分方程 xff0c 分为位置式和增量式两类 重点理解概念如下 xff1a a xff09 基本偏差e
  • 简单常用滤波算法C语言实现

    1 限幅滤波算法 xff08 程序判断滤波算法 xff09 方法解析 xff1a 根据经验判断 xff0c 确定两次采样允许的最大偏差值 xff08 设定为A xff09 xff0c 每次检测到新值时判断 xff1a 如果本次值与上次值之差