图像卷积和图像滤波的一些知识

2023-05-16

转自 http://blog.csdn.net/zouxy09/article/details/49080029

一、线性滤波与卷积的基本概念

      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。

      对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。

      Correlation 和 Convolution可以说是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性shift-invariant。平移不变性指我们在图像的每个位置都执行相同的操作。线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。这两个属性使得这个操作非常简单,因为线性操作是最简单的,然后在所有地方都做同样的操作就更简单了。

      实际上,在信号处理领域,卷积有广泛的意义,而且有其严格的数学定义,但在这里不关注这个。

      2D卷积需要4个嵌套循环4-double loop,所以它并不快,除非我们使用很小的卷积核。这里一般使用3x3或者5x5。而且,对于滤波器,也有一定的规则要求:

      1)滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。

      2)滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。

      3)如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。

      4)对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。

二、神奇的卷积核

      上面说到,对图像的滤波处理就是对图像应用一个小小的卷积核,那这个小小的卷积核到底有哪些魔法,能让一个图像从惨不忍睹变得秀色可餐。下面我们一起来领略下一些简单但不简单的卷积核的魔法。

2.1、啥也不做

      哈哈,大家可以看到啥了吗?这个滤波器啥也没有做,得到的图像和原图是一样的。因为只有中心点的值是1。邻域点的权值都是0,对滤波后的取值没有任何影响。

      下面我们动点真格的。

2.2、图像锐化滤波器Sharpness Filter

      图像的锐化和边缘检测很像,首先找到边缘,然后把边缘加到原来的图像上面,这样就强化了图像的边缘,使图像看起来更加锐利了。这两者操作统一起来就是锐化滤波器了,也就是在边缘检测滤波器的基础上,再在中心的位置加1,这样滤波后的图像就会和原始的图像具有同样的亮度了,但是会更加锐利。

      我们把核加大,就可以得到更加精细的锐化效果

      另外,下面的滤波器会更强调边缘:

      主要是强调图像的细节。最简单的3x3的锐化滤波器如下:

      实际上是计算当前点和周围点的差别,然后将这个差别加到原来的位置上。另外,中间点的权值要比所有的权值和大于1,意味着这个像素要保持原来的值。

2.3、边缘检测Edge Detection

      我们要找水平的边缘:需要注意的是,这里矩阵的元素和是0,所以滤波后的图像会很暗,只有边缘的地方是有亮度的。

      为什么这个滤波器可以寻找到水平边缘呢?因为用这个滤波器卷积相当于求导的离散版本:你将当前的像素值减去前一个像素值,这样你就可以得到这个函数在这两个位置的差别或者斜率。下面的滤波器可以找到垂直方向的边缘,这里像素上和下的像素值都使用:

      再下面这个滤波器可以找到45度的边缘:取-2不为了什么,只是为了让矩阵的元素和为0而已。

      那下面这个滤波器就可以检测所有方向的边缘:

      为了检测边缘,我们需要在图像对应的方向计算梯度。用下面的卷积核来卷积图像,就可以了。但在实际中,这种简单的方法会把噪声也放大了。另外,需要注意的是,矩阵所有的值加起来要是0.

2.4、浮雕Embossing Filter

      浮雕滤波器可以给图像一种3D阴影的效果。只要将中心一边的像素减去另一边的像素就可以了。这时候,像素值有可能是负数,我们将负数当成阴影,将正数当成光,然后我们对结果图像加上128的偏移。这时候,图像大部分就变成灰色了。

      下面是45度的浮雕滤波器

      我们只要加大滤波器,就可以得到更加夸张的效果了

      这种效果非常的漂亮,就像是将一副图像雕刻在一块石头上面一样,然后从一个方向照亮它。它和前面的滤波器不同,它是非对称的。另外,它会产生负数值,所以我们需要将结果偏移,以得到图像灰度的范围。

      A:原图像。B:锐化。C:边缘检测。D:浮雕

2.5、均值模糊Box Filter (Averaging)

      我们可以将当前像素和它的四邻域的像素一起取平均,然后再除以5,或者直接在滤波器的5个地方取0.2的值即可,如下图:

      可以看到,这个模糊还是比较温柔的,我们可以把滤波器变大,这样就会变得粗暴了:注意要将和再除以13.

      所以,如果你想要更模糊的效果,加大滤波器的大小即可。或者对图像应用多次模糊也可以。

 

2.6、高斯模糊

      均值模糊很简单,但不是很平滑。高斯模糊就有这个优点,所以被广泛用在图像降噪上。特别是在边缘检测之前,都会用来移除细节。高斯滤波器是一个低通滤波器。

 

2.7、运动模糊Motion Blur

      运动模糊可以通过只在一个方向模糊达到,例如下面9x9的运动模糊滤波器。注意,求和结果要除以9。

      这个效果就好像,摄像机是从左上角移动的右下角。

三、卷积的计算

      对图像处理而言,存在两大类的方法:空域处理和频域处理!空域处理是指直接对原始的像素空间进行计算,频率处理是指先对图像变换到频域,再做滤波等处理。

3.1、空域计算-直接2D卷积

3.1.1、2D卷积

      直接2D卷积就是一开始说的那样,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。

      直接的实现也称为暴力实现brute force,因为它严格按照定义来实现,没有任何优化。当然了,在并行实现里面,它也是比较灵活的。另外,也存在一个优化版本,如果我们的kernel是separable可分的,那么就可以得到一个快5倍左右的卷积方法。

2.1.2、边界处理

      那卷积核遇到图像边缘怎么办?例如图像顶部的像素,它的上面已经没有像素了,那么它的值如何计算?目前有四种主流的处理方法,我们用一维卷积和均值滤波来说明下。

      我们在1D图像中,用每个像素和它的二邻域的平均值来取代它的值。假设我们有个1D的图像I是这样的:

      对非图像边界的像素的操作比较简单。假设我们对I的第四个像素3做局部平均。也就是我们用2,3和7做平均,来取代这个位置的像素值。也就是,平均会产生一副新的图像J,这个图像在相同位置J (4) = (I(3)+I(4)+I(5))/3 = (2+3+7)/3 = 4。同样,我们可以得到J(3) = (I(2)+I(3)+I(4))/3 =(4+2+3)/3 = 3。需要注意的是,新图像的每个像素都取决于旧的图像,在计算J (4)的时候用J (3)是不对的,而是用I(3),I(4)和I(5)。所以每个像素都是它和它邻域两个像素的平均。平均是线性的操作,因为每个新的像素都是旧像素的线性组合。

      对卷积,也有必须要考虑的情况是,在图像边界的时候,怎么办?J(1)的值应该是什么?它取决于I(0),I(1)和I(2)。但是我们没有I(0)呀!图像左边没有值了。有四种方式来处理这个问题:

      1)第一种就是想象I是无限长的图像的一部分,除了我们给定值的部分,其他部分的像素值都是0。在这种情况下,I(0)=0。所以J(1) = (I(0) + I(1) + I(2))/3 = (0 + 5 + 4)/3= 3. 同样,J(10) = (I(9)+I(10)+I(11))/3 = (3+ 6 + 0)/3 = 3.

      2)第二种方法也是想象I是无限图像的一部分。但没有指定的部分是用图像边界的值进行拓展。在我们的例子中,因为图像I最左边的值I(1)=5,所以它左边的所有值,我们都认为是5 。而图像右边的所有的值,我们都认为和右边界的值I(10)一样,都是6。这时候J(1) = (I(0) + I(1) + I(2))/3 = (5 + 5 + 4)/3= 14/3. 而J(10) = (I(9)+I(10)+I(11))/3 = (3 + 6 + 6)/3 = 5。

      3)第三种情况就是认为图像是周期性的。也就是I不断的重复。周期就是I的长度。在我们这里,I(0)和I(10)的值就是一样的,I(11)的值和I(1)的值也是一样的。所以J(1) = (I(0) + I(1) + I(2))/3= (I(10) + I(1)+ I(2))/3 = (6 + 5 + 4)/3 = 5 。

      4)最后一种情况就是不管其他地方了。我们觉得I之外的情况是没有定义的,所以没办法使用这些没有定义的值,所以要使用图像I没有定义的值的像素都没办法计算。在这里,J(1)和J(10)都没办法计算,所以输出J会比原图像I要小。

      这四种方法有各自的优缺点。如果我们想象我们使用的图像只是世界的一个小窗口,然后我们需要使用窗口边界外的值,那么一般来说,外面的值和边界上的值是几乎相似的,所以第二种方法可能更说得过去。

2.2、频域计算-快速傅里叶变换FFT卷积

      这个快速实现得益于卷积定理:时域上的卷积等于频域上的乘积。所以将我们的图像和滤波器通过算法变换到频域后,直接将他们相乘,然后再变换回时域(也就是图像的空域)就可以了。

      o表示矩阵逐元素相乘。那用什么方法将空域的图像和滤波器变换到频域了。那就是鼎鼎大名的Fast Fourier Transformation 快速傅里叶变换FFT(其实,在CUDA里面,已经实现了FFT了)。

      要在频域中对一副图像进行滤波,滤波器的大小和图像的大小必须要匹配,这样两者的相乘才容易。因为一般滤波器的大小比图像要小,所以我们需要拓展我们的kernel,让它和图像的大小一致。

      因为CUDA中的FFT实现是周期的,所以kernel的值也要安排成这样,以支持这种周期性。

      为了保证图像边界的像素也可以得到响应输出,我们也需要拓展我们的输入图像。同时,拓展的方式也要支持周期表达。

      如果只是使用卷积定理,没有对输入进行任何修改的话,那么我们得到的是周期卷积的结果。但这可能不是我们要的,因为周期卷积会对输入数据进行周期填补,引入一些artifacts。

      给定N长度的I和K,为了得到线性卷积,我们需要对I和K进行zero padding。为什么要补0,因为DFT假定了输入是无限和周期的,周期是N。 

      如上图,对于I和K,如果没有padding的话,隐含着会假定I和K是周期的,以他们的长度N为周期。图中本来N长度的I和K都是黑色虚线的部分,然后如果没有padding,隐含着就会在N之外,加上同样的无数个I,如红色虚线部分,加上了一个周期。对K也是这样。如果是zero padding的话,在黑色虚线的其他地方都全是0了,如图中蓝色部分。将I和K卷积,如果没有padding,如黑色虚线,会有红色那部分的artifact。如果有padding,就是蓝色实线。

 四、实验代码

      这是第二部分的Matlab实验代码:

 

[python] view plain copy

 

  1. clear,close all, clc  
  2.    
  3. %% readimage  
  4. image =imread('test.jpg');  
  5.    
  6. %% definefilter  
  7. % -----Identity filter -----  
  8. kernel =[0, 0, 0  
  9.                      0, 1, 0  
  10.                      0, 0, 0];  
  11.    
  12. % -----Average Blur -----  
  13. kernel =[0, 1, 0  
  14.                      1, 1, 1  
  15.                      0, 1, 0] / 5;  
  16.    
  17. % -----Gaussian Blur -----  
  18. kernel =fspecial('gaussian', 5 , 0.8);  
  19.    
  20. % -----Motion Blur -----  
  21. kernel =[1, 0, 0, 0, 0  
  22.                      0, 1, 0, 0, 0  
  23.                      0, 0, 1, 0, 0  
  24.                      0, 0, 0, 1, 0  
  25.                      0, 0, 0, 0, 1] / 5;  
  26.                       
  27. % -----Edges Detection -----  
  28. kernel =[-1, -1, -1  
  29.                      -1, 8, -1  
  30.                      -1, -1, -1];  
  31.    
  32. % -----Sharpen filter -----  
  33. kernel =[-1, -1, -1  
  34.                      -1, 9, -1  
  35.                      -1, -1, -1];  
  36.                       
  37. % -----Emboss filter -----  
  38. kernel =[-1, -1, 0  
  39.                      -1,  0,1  
  40.                      0,   1,1];  
  41.                       
  42. %% convolethe image with defined kernel or filter  
  43. result =zeros(size(image));  
  44. result(:,:, 1) = conv2(double(image(:, :, 1)), double(kernel), 'same');  
  45. result(:,:, 2) = conv2(double(image(:, :, 2)), double(kernel), 'same');  
  46. result(:,:, 3) = conv2(double(image(:, :, 3)), double(kernel), 'same');  
  47.    
  48. %% showthe result  
  49. imshow(image);  
  50. figure  
  51. imshow(uint8(result))  


五、参考文献

 

[1] Correlation and Convolution.pdf

[2] Lode's Computer GraphicsTutorial Image Filtering

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

图像卷积和图像滤波的一些知识 的相关文章

  • C#发送邮件实例

    using System using System Collections Generic using System ComponentModel using System Data using System Drawing using S
  • closehandle()函数

    引用自 百度百科 xff0c 用于解决今天遇到的close handle 后什么时候释放资源问题 xff1a 方法名称 xff1a CloseHandle 位置 xff1a Kernel32 dll BOOL CloseHandle HAN
  • c++清空串口缓冲区

    缓冲区控制 Win32通信API除了提供SetupComm 函数实现初始化的缓冲区控制外 xff0c 还提供了PurgeComm 函数和FlushFileBuffers 函数来进行缓冲区操作 PurgeComm 函数的声明如下 xff1a
  • C++ int与string的转化

    int本身也要用一串字符表示 xff0c 前后没有双引号 xff0c 告诉编译器把它当作一个数解释 缺省情况下 xff0c 是当成10进制 xff08 dec xff09 来解释 xff0c 如果想用8进制 xff0c 16进制 xff0c
  • c++中字符数组内存和指针问题示例解答

    char id 61 34 123456 34 char c 61 34 SN 61 34 unsigned char buffer 20 int j 61 0 for int i 61 0 i lt strlen c i 43 43 bu
  • c++中LPCTSTR,LPTSTR 解释

    char是C语言标准数据类型 xff0c 字符型 xff0c 至于由几个字节组成通常由编译器决定 xff0c 一般一个字节 Windows为了消除各编译器的差别 xff0c 重新定义了一些数据类型 xff0c 你提到了另外几个类型都是这样
  • Delphi 自定义事件的例子

    我们这个控件将演示控件的自定义事件的书写 这个控件有一个类型为string的SensitiveText属性 xff0c 当用户在输入框中输入的文字为InvalidText时就会触发OnSensitiveText事件 按照惯例 xff0c 我
  • c++中sscanf的用法

    sscanf 读取格式化的字符串中的数据 swscanf 是 sscanf 的宽字符版本 xff1b swscanf 的参数是宽字符串 swscanf不处理 Unicode 全角十六进制或 34 兼容性区 34 字符 除此以外 xff0c
  • c++内存测试

    void MemoryTest 内存测试 指针嵌套 char rr 栈中分配内存 系统自动分配释放 xff09 int ee 61 int amp rr 将rr的内存地址转换成整型数 char yy 61 amp rr 定义一个字符型指针y
  • C/C++串口通信原理及读写与操作

    http wangbaiyuan cn c serial communication write reading html 展开 文章目录 在工业控制中 xff0c 工控机 xff08 一般都基于Windows平台 xff09 经常需要与智
  • c# 调用c库dll ,char*转string的解决办法

    最近由于有个未知的设备需要用到modbus通讯协议 xff0c 底层需要与PLC通讯 xff0c 坤跌 xff0c PLC啥型号也不清楚封在里面不能拆 前人只留了几个不能运行的QT代码以及不完整的文档 用惯了C 想要重新学QT xff0c
  • C++多线程编程(入门实例)

    多线程在编程中有相当重要的地位 xff0c 我们在实际开发时或者找工作面试时总能遇到多线程的问题 xff0c 对多线程的理解程度从一个侧面反映了程序员的编程水平 其实C 43 43 语言本身并没有提供多线程机制 xff08 当然目前C 43
  • Android Studio 使用Log

    Android使用log来记录信息 xff0c 测试了下 xff0c 和system out println区别不大 xff0c 主要优势在于能使用过滤器过滤日志 本文记录基础的log使用方法 xff0c 来自 第一行代码 xff0c 以及
  • 指针强制转换问题

    void ff void abc 任意类型数据指针 xff08 指针即内存地址 xff09 int z 61 int abc 强制转换成int 指针变量 int zz 61 z 获取内存中的值
  • 新手git教程

    本文转载自 xff1a http igeekbar com igeekbar post 82 htm Git近些年的火爆程度非同一般 xff0c 这个版本控制系统被广泛地用在大型开源项目 xff08 比如Linux xff09 xff0c
  • 使用Project进行项目管理

    下面开始介绍Project的使用 1 从下列地址获取Project 2010的副本 版权问题 xff0c 已删除地址 2 安装 2 1 版权页 2 2 自定义安装页 2 3 安装完毕 3 使用该软件进行项目管理 3 1 打开Project
  • Marshal在C#中的应用(void *指针到IntPtr的转化)

    C 调用C语言的API时一般把void 指针转换成IntPtr xff0c 但这经常远远不够的 在C语言中void 是个万金油 xff0c 尤其是一些老的c语言程序 xff0c 所有的参数就一个void 指针 xff0c 里面包罗万象 xf
  • VS2012 2013 无法显示查找功能 无法具体定位 解决方法

    xfeff xfeff 问题的现象 通过使用 Ctrl 43 Shift 43 F 也就是Find In Files功能 xff0c 使用之后只能显示统计结果 不显示具体行 如下图 regedit 中在注册表中查找 xff1a HKEY C
  • C#中使用指针转换数据类型[C#/unsafe]

    今日因为一个同事说起 xff0c 在原来的旧系统中使用指针做数据转换很方便 xff0c 比如要把浮点数转化为数组 xff0c 也或者是字符串的相互转换 xff1b 当然 xff0c 大家都知道c 中实现指针只需要写入unsafe 编译选项把
  • c#指针的使用例程

    unsafe double value 61 888888 byte v1 61 BitConverter GetBytes value byte v2 61 new byte v1 Length double pv 61 amp valu

随机推荐

  • MPAndroidChart LineChart 折线图 你要的都在这里了

    前言 MPAndroidChart已经出了很长的一段时间 xff0c 相信大家也有所耳闻 xff0c 自己也使用了有一段时间 xff0c 固在此写下文章 xff0c 根据项目的需求 xff0c 记录一些见解与问题 xff0c 作为参考 望大
  • Android Chart框架 MPAndroidChart 坐标轴设置

    1 轴线的绘制 设置轴线就先必须取得轴线类Axis 在一个图标中有三个轴线 xff1a x轴 xff1a 调用 getXAxis 获取左边y轴 xff1a 调用 getAxisLeft 获取右边y轴 xff1a 调用 getAxisRigh
  • Android图表控件MPAndroidChart——曲线图LineChart的使用(财富收益图)

    目录 前言 本文涉及文章 其他相关文章 1 数据准备 1 1 数据来源 2 曲线展示 2 1 MPAndroidChart获取 2 2 数据对象获取 2 3 数据展示 3 曲线完善 3 1 图表背景 边框 网格线修改 3 2 X Y轴值的自
  • Android资源文件在配置文件中的使用

    Android资源文件大致可以分为两种 xff1a 第一种是res目录下存放的可编译的资源文件 xff1a 这种资源文件系统会在R Java里面自动生成该资源文件的ID xff0c 所以访问这种资源文件比较简单 xff0c 通过R XXX
  • android 如何创建配置文件和读配置文件

    因为一些配置信息 xff0c 多处用到的 且以后可能变更的 xff0c 我想写个 prorperties配置文件给管理起来 在studio中新建一个Assets文件 gt 新建一个file文件类型为properties文件 该文件可以与re
  • android上如何写配置文件

    android上如何写配置文件 xff1a 使用SharedPreferences SharedPreferences是Android平台上一个轻量级的存储类 xff0c 用来保存应用的一些常用配置 xff0c 比如Activity状态 x
  • android SharedPreferences的用法

    之前做应用时碰到这样一个问题 xff1a 在 A Activity 要与 B Activity的Fragment进行通信传值 xff0c 但是忽然发现无法拿到B中Fragment的Handler xff0c 又不能发送广播 xff0c 短暂
  • Android中数据库的一些操作(增删改查)

    提起Android的开发 xff0c 就不得不提数据库 xff0c 几乎每个App中都会用到Sqlit数据库存储一些数据 xff0c 小编闲暇时期 xff0c 写了一个小demo关于数据库的增删改查 xff0c 之前也介绍过数据库的一个开源
  • VC2008 无法调试,无法断点,断点无效的最终解决方法

    今天VC2008忽然又出现断点无效了 按上次博客说的格式化了源文件 也删了编译工程数据库文件 问题依就 经过测试找到了终解决方法 其实出现这个问题常常出现在工程中某一个源文件中 多是文件内的一些不可视符出了问题 比较多的是由于制表符Tab
  • 计蒜客 蓝桥杯模拟赛1 马的管辖

    代码来自https blog csdn net weixin 41793113 article details 86721181 在中国象棋中 xff0c 马是走日字的 一个马的管辖范围指的是当前位置以及一步之内能走到的位置 xff0c 下
  • 菜单项onCreateOptionsMenu()和onOptionsItemSelected()的使用

    函数onCreateOptionsMenu 为创建Menu菜单的项目 函数onOptionsItemSelected 为处理菜单被选中运行后的事件处理 首先看下Activity的内容 xff1a lt span style 61 34 fo
  • C# 解决窗体假死的状态 非常有用!且非常重要!

    异步调用是CLR为开发者提供的一种重要的编程手段 xff0c 它也是构建高性能 可伸缩应用程序的关键 在多核CPU越来越普及的今天 xff0c 异步编程允许使用非常少的线程执行很多操作 我们通常使用异步完成许多计算型 IO型的复杂 耗时操作
  • C# Message 消息处理

    一 消息概述 Windows下应用程序的执行是通过消息驱动的 消息是整个应用程序的工作引擎 xff0c 我们需要理解掌握我们使用的编程语言是如何封装消息的原理 C 自定义消息通信往往采用事件驱动的方式实现 xff0c 但有时候我们不得不采用
  • C++new和delete实现原理(汇编解释)

    new和delete最终调用malloc和free xff0c 关于malloc和free实现原理参见这篇文章 xff1a http blog csdn net passion wu128 article details 38964045
  • c++中创建类型测试

    OpenVCTest cpp 定义控制台应用程序的入口点 include 34 stdafx h 34 class A public int a 61 10 class B public B int a b 61 a B int b 61
  • 离散卷积

    离散卷积 是两个离散序列 f n 和 h n 之间按照一定的规则将它们的有关序列值分别两两相乘再相加的一种特殊的运算 具体可用公式表示为 xff1a 离散函数 png 简记为 g n 61 f n h n 其中 xff1a g n 是经过卷
  • 最容易理解的对卷积(convolution)的解释

    啰嗦开场白 读本科期间 xff0c 信号与系统里面经常讲到卷积 convolution xff0c 自动控制原理里面也会经常有提到卷积 硕士期间又学了线性系统理论与数字信号处理 xff0c 里面也是各种大把大把卷积的概念 至于最近大火的深度
  • 高斯滤波

    高斯滤波 高斯滤波的含义 xff1a 高斯滤波就是对整幅图像进行加权平均的过程 xff0c 每一个像素点的值 xff0c 都由其本身和邻域内的其他像素值经过加权平均后得到 高斯滤波的作用 xff1a 高斯滤波是一种线性平滑滤波 xff0c
  • OpenCV:详解掩膜mask

    在OpenCV中我们经常会遇到一个名字 Mask 掩膜 很多函数都使用到它 xff0c 那么这个Mask到底什么呢 xff1f 一开始我接触到Mask这个东西时 xff0c 我还真是一头雾水啊 xff0c 也对无法理解Mask到底有什么用
  • 图像卷积和图像滤波的一些知识

    转自 http blog csdn net zouxy09 article details 49080029 一 线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法 xff0c 它可以允许我们对图像进行处理 xff0c 产生很多