开关稳压DC—DC降压电路简介

2023-11-12

    在做数字压力开关项目时,电源输入要求是12V~24V±10%,系统内需要5V和3.3V的电源,这时提供了三个方案从中选择,方案一:使用24V-5V和5V-3.3V的LDO线性稳压芯片。方案二:使用24V-12V,12V-5V,5V-3.3V种LDO线性稳压芯片。方案三:使用24V-5V开关稳压芯片和5V-3.3V的线性稳压芯片。

   最后考虑决定使用方案三,方案一中24V-5V的线性稳压芯片比较少,而且在转换过程中有19V的压降,当电源电流达到100mA时电源的耗散功耗有1.9W会使芯片发热严重。方案二中成本较高,整体损耗功率也大。方案三中开关稳压芯片稳压范围大,能量损耗小,简单来说就是按需释放能量。

   以项目中使用的三垦电气的降压开关电源芯片NE111E为例,在集成的开关稳压芯片中有反馈引脚:FB,输出电压通过计算比例分压后输入至反馈引脚FB与芯片内置比较器比较,当高于或低于基准电压时芯片自动调整PWM波的占空比直到输出电压稳在所求的电压上。即输出电压与输入电压和PWM波占空比成正比,公式为Vo=Vin*D(PWM占空比)。


下文为开关电源BUCK电路工作原理及工作模数分析(转载),地址http://www.elecfans.com/analog/20171107576132.html

一、Buck电路原理图

  Buck电路工作原理以及三种工作模式分析

  Buck电路,又称降压电路,其基本特征是DC-DC转换电路,输出电压低于输入电压。输入电流为脉动的,输出电流为续的。

  二、Buck电路工作原理

  当开关管Q1驱动为高电平时,开关管导通,储能电感L1被充磁,流经电感的电流线性增加,同时给电容C1充电,给负载R1提供能量。等效电路如图二

  Buck电路工作原理以及三种工作模式分析

  图二

  当开关管Q1驱动为低电平时,开关管关断,储能电感L1通过续流二极管放电,电感电流线性减少,输出电压靠输出滤波电容C1放电以及减小的电感电流维持,等效电路如图三

  Buck电路工作原理以及三种工作模式分析

  图三

  三、Buck电路的三种工作模式:CCM,BCM,DCM

  1、CCM Mode:关键点原件波形见图四

  Buck电路工作原理以及三种工作模式分析

  图四

  开关管Q1导通时,根据KVL定律:

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  2、BCM Mode:关键点原件波形见图五

  Buck电路工作原理以及三种工作模式分析

  图五

  Buck电路工作原理以及三种工作模式分析

  3、DCM Mode:关键点原件波形见图六

  Buck电路工作原理以及三种工作模式分析

  图六

  Buck电路工作原理以及三种工作模式分析

  四、外为参数对系统工作模式的影响:

  Buck电路工作原理以及三种工作模式分析

  图七

  Buck电路工作原理以及三种工作模式分析

  五、BUCK电路仿真验证:

Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  图八

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  2、CCM模式仿真验证:在上述BCM分析的基础上,得出储能电感的电感量80uH为临界点,由系统工作在CCM的条件,可以将储能电感电感量设置为120uH,理论计算:

  Buck电路工作原理以及三种工作模式分析

  参照图十,可以得出仿真结果,

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  3、DCM模式仿真验证:在上述BCM分析的基础上,得出储能电感的电感量80uH为临界点,由系统工作在DCM的条件,可以将储能电感电感量设置为40uH。重点验证输入输出电压关系以及输出平均电流关系。

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析

  Buck电路工作原理以及三种工作模式分析


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

开关稳压DC—DC降压电路简介 的相关文章

  • DC-DC直流斩波---BUCK降压斩波电路

    降压斩波电路 Buck Chopper 的原理图及工作波形 该电路使用一个全控型器件V 图中为IGBT 也可使用其他器件 若采用晶闸管 需设置使晶闸管关断的辅助电路 图5 1中 为在V关断时给负载中电感电流提供通道 设置了续流二极管VD 斩
  • 05、建立模块

    在上一节中 我们学会了在电路图中嵌入了计算公式 本节我们将在此基础上 将闭环BUCK电路的反馈网络建立成一个模块 然后我们以后就可以直接调用模块来实现电路的设计了 好了 下面我们就一步一步的来实现此功能吧 Step 01 建立一个原理图文件
  • AC-DC--------单相可控整流电路

    带电阻负载的工作情况 原理图 波形图 在分析整流电路工作时 认为晶闸管 开关器件 为理想器件 即晶闸管导通时其管压降等于零 晶闸管阻断时其漏电流等于零 除非特意研究晶闸管的开通 关断过程 一般认为晶闸管的开通与关断过程瞬时完成 工作原理 改
  • DC-DC---升压斩波电路(BOOST)

    直流升压电路电路 原理图 工作波形 工作原理 分析升压斩波电路的工作原理时 首先假设电路中电感L值很大 电容C值也很大 当可控开关V处于通态时 电源E向电感L充电 充电电流基本恒定为I 同时电容C上的电压向负载R供电 因C值很大 基本保持输
  • 开关电源环路稳定性分析(10)——OPA和OTA型补偿器传递函数

    大家好 这里是大话硬件 在前面9讲的内容中将开关电源环路分析进行了梳理 我相信很多人即使都看完了 应该还是不会设计 而且还存在几个疑问 比如我随便举几个 开关电源的带宽怎么设定 开关电源精度和什么相关 怎么调节动态响应 动态响应和什么有关系
  • BUCK同步整流

    图一 buck电路 开关电源相对于LDO来说具有输出电流大以及效率高等优点 由图一可以看到buck电路的损耗除了电感内阻 以及开关管SW的损耗 开关损耗 导通损耗 外还有二极管存在一定的损耗 在电压输入输出电压较大的情况下可以暂时不进行考虑
  • BUCK电路输入电容计算

    输入电容决定了输入电压的纹波 对于Buck变换器的输入端来说 输入电流是不连续的 在开关管导通的时候会有极大的阶跃电流 芯 片 BUCK控制器 时 间 2021 04 27 说 明 适用于稳态和动态负载 在Buck变换器的输入电压最小时 满
  • buck电路_简单电源(1)从电阻分压、稳压管、线性稳压器到BUCK变换器

    电阻分压就是BUCK降压器最基本的原理 惊讶吧 如果有一个10V的电压 要想得到5V的电压 怎么办 非常简单 用二个阻值相同的电阻R1 R2串联起来 从接地电阻R2上取电压 就直接得到5V电压 图1 串联电阻分压 如果给这个电压加负载 二个
  • 开关电源原理、电路组成部分

    开关电源电路图及原理12v分析 详细版 KIA半导体的博客 CSDN博客 开关电源适配器各部分电路原理分析介绍
  • 开关电源基本原理和种类-反激-正激

    不可不知的几种开关电源及工作原理 前面分享了部分开关电源的基础知识 里面经常涉及不同种类的开关电源 虽然说 开关电源再怎么变 原理都一样 但过程细节总有区别 比如说 石墨和钻石都是同一种元素 碳 但性质有天地之别 扯远了 这次 我总结归纳了
  • buck电路_基本斩波电路---BUCK电路

    BUCK电路又称降压斩波电路 其工作原理图如图1所示 该电路有输入直流电源Vin 一个全控器件M1 续流二极管D1 电感L1 负载R1 其主要用于电路的供电电源及带蓄电池负载 拖动直流电机等 在拖动直流电机及蓄电池负载时会出现反电动势 如图
  • 开关电源环路稳定性分析(01)-Buck变换器

    大家好 这里是大话硬件 说到开关电源不得不提的就是开关的环路稳定性 但是这一块目前用的DC DC芯片 很多厂家在芯片内部都已经做好了 所以对于使用的人来说 即使不太关注环路的稳定 按照手册中推荐的值设计产品也能正常使用 当然 仅仅是按照手册
  • 【开关电源一】电源拓扑之buck、boost、buck-boost

    个人主页 highman110 作者简介 一名硬件工程师 持续学习 不断记录 保持思考 输出干货内容 目录 1 BUCK变换器 1 1 Buck电路工作原理 1 2 Buck电路输入输出关系推导 2 BOOST变换器 2 1 Boost电路
  • 详解Boost电路的基本原理

    Boost电路是一种开关直流升压电路 它能够使输出电压高于输入电压 在电子电路设计当中算是一种较为常见的电路设计方式 本篇文章针对新手 将为大家介绍Boost升压电路的工作原理 首先我们需要知道 电容阻碍电压变化 通高频 阻低频 通交流 阻
  • MOS管栅极驱动电流计算

    我们知道MOS管是电压控制的 从理论上MOS管电流为零 但是半导体不是理想器件 不可避免的会存在一些寄生参数 阅读LT芯片手册可以知道 栅极驱动电流公式如下图 Fsw为开关频率 Qg为mos管栅极充满所需电荷 MOS管以BSC109N10N
  • 单端反激(Flyback)变换器的工作原理

    反激 Flyback 型电路的结构见图2 40 该电路可以看成是将boost buck电路中的电感换成相互耦合的电感N1和N2得到的 因此反激型电路中的变压器在工作中总是经历着储能一放电的过程 电流工作在连续模式CCM 它与正激电路不同的地
  • 开关稳压DC—DC降压电路简介

    在做数字压力开关项目时 电源输入要求是12V 24V 10 系统内需要5V和3 3V的电源 这时提供了三个方案从中选择 方案一 使用24V 5V和5V 3 3V的LDO线性稳压芯片 方案二 使用24V 12V 12V 5V 5V 3 3V种
  • 【软件工程师学硬件】之 开关电源(4) —— 初识Viper12a

    Viper12a是一个很不错的电源芯片 至少我是这样认为的 当然了 肯定有很多其他的很好的电源芯片 我之所以以Viper12a为例 一方面是其电路简单 便于说明问题 其次它用得比较广 什么电磁炉 影碟机上面电源芯片大部分都是它 其三价格也比
  • DCDC电源设计中需要考虑的问题

    一 电子开关设计 1 为什么用MOS管做开关管 2 MOS驱动电路用图腾柱还是用推挽电路 3 MOS悬浮电压设计思想以及工作原理 二 PWM驱动波形 1 频率如何设置 2 占空比如何调整 3 三角波生成电路如何设计 4 比较器参考电压如何选
  • 开关电源环路学习笔记(6)-开关变换器传递函数Gvd(s)推导过程

    终于到了最关键的环节 也是最难的环节 如何求出开关级的传递函数 也就是下图这一级 哎 不得不说 太难了 不过没办法 先前夸下海口 跟兄弟们说我要把环路搞清楚 现在搞不动也得搞啊 这一级之所以这么难 主要是有开关元器件 本身是非线性的 当然了

随机推荐

  • 表(Table)和段(Segment)之间是什么关系

    Q A 表 Table 和段 Segment 之间是什么关系 English 作者 fuyuncat 来源 www HelloDBA com 日期 2009 08 28 02 13 24 问 表 Table 和段 Segment 之间是什么
  • 原型和原型链继承

    JavaScript 原型 JavaScript 是一种通过原型实现继承的语言与别的高级语言是有区别的 像 java C 是通 过类型决定继承关系的 JavaScript 是的动态的弱类型语言 总之可以认为 JavaScript 中所有 都
  • python连接pymysql主机目标无响应_python3之pymysql模块

    1 python3 MySQL数据库链接模块 PyMySQL 是在 Python3 x 版本中用于连接 MySQL 服务器的一个库 Python2中则使用mysqldb PyMySQL 遵循 Python 数据库 API v2 0 规范 并
  • MSYS2 Mingw Cygwin对比

    系列文章目录 文章目录 系列文章目录 前言 一 MSYS2 是什么 前言 Mingw 仅支持 32 bit 程序 现在一般用 Mingw w64 既支持 32 也支持 64 bit Mingw W64 官网 一个教程 MSYS2 是一个 w
  • 关于 document.onclick

    document onclick事件 当在浏览器内容域中当发生一次鼠标单机事件就产生一个事件对象
  • 融云获评「创业邦 · 最具创新价值出海服务商」

    点击报名 9 月 21 日融云直播课 8 月 22 日 23 日 创业邦主办的 2023 DEMO WORLD 全球开放式创新大会暨企业出海未来大会 在上海举行 会上发布了 创业邦 2023 出海企业创新价值 100 强 融云荣登榜单 获评
  • Oracle 数据库中删除表空间的详细步骤与示例

    系列文章目录 文章目录 系列文章目录 前言 一 查看表空间 二 数据迁移和备份 三 下线表空间中的对象 四 删除表空间 五 删除完成后的操作 总结 前言 在 Oracle 数据库中 表空间是存储数据的逻辑容器 有时候 我们可能需要删除不再使
  • 深度学习(20):nerf论文翻译与学习

    目录 1 Introduction 2 Related Work 3 Neural Radiance Field Scene Representation 4 Volume Rendering with Radiance Fields 5
  • Python中出现UnboundLocalError: local variable ‘xxx‘ referenced before assignment情况的解决方法

    UnboundLocalError local variable xxx referenced before assignment 在函数外部已经定义了变量n 在函数内部对该变量进行运算 运行时会遇到了这样的错误 主要是因为没有让解释器清楚
  • 使用Hyperledger Fabric Java SDK 构建和部署区块链网络(windows下)

    在区块链解决方案中 区块链网络作为后端与应用程序前端一起使用SDK与网络通信 为了建立前端和后端之间的通信 Hyperledger Fabric社区为各种编程语言提供了许多SDK 如NodeJS SDK和Java SDK 此代码模式解释了使
  • PHP保留两位小数的三种方法

    PHP保留两位小数的三种方法 ps 本人亲测 阿里云2核4G5M的服务器性价比很高 新用户一块多一天 老用户三块多一天 最高可以买三年 感兴趣的可以戳一下 阿里云折扣服务器 PHP保留两位小数的几种方法 link http www phpd
  • 用Compose shape把外框做成封闭图形

    Compose shape之后为何会成这个样子 以下并板框的实际图样 只论述方法 解决办法 compose shape 时不要把整个outline框起来 用tempgroup一段一段的选择 选完后complete 特别要注意的是要选中相应的
  • mysql数据库商业版与社区版的区别

    1 商业版本组织管理与测试环节控制更严格 稳定性方面 会比社区版本更稳定 2 mysql是成熟产品 商业版与社区版之间性能方面相差不大 3 商业版不遵守GPL协议 社区版遵守GPL协议可以免费使用 4 使用商业版后可以购买相关的服务 享受7
  • DVWA全级别详细通关教程

    目录 暴力破解 Brute Force low Medium High Impossible 命令注入 Command Injection low Medium High Impossible CSRF 跨站请求伪造 low Medium
  • 哈工大团队开源医学智能问诊大模型

    原文 CVHub 门头沟学院AI视觉实验室御用公众号 学术 科研 就业 185篇原创内容 公众号 Title HuaTuo Tuning LLaMA Model with Chinese Medical KnowledgePDF https
  • 【MySQL】MySQL索引详解

    Mysql索引 0 写在前面 1 为什么要使用索引 2 常见的索引模型 3 索引维护 4 回表 举例子 0 写在前面 文章中包含了 1 什么是索引 2 索引的数据结构 以及各自的使用场景 3 为什么要设置主键自增 4 基于主键索引和普通索引
  • 如何修改tomcat默认端口号8080的方法

    1 背景 在默认情况下 tomcat的端口是8080 使用了两个tomcat 那么就需要修改其中的一个的端口号才能使得两个同时工作 2 方法 2 1改动一 那么 如何修改tomcat的端口号呢 首先到安装目录 或者解压目录 下找到conf文
  • 理解c++中左值与右值的一篇文章

    C 中的左值与右值 说明 这一部分内容只是帮助理解 C 11 中左值与右值的概念 在编程实践中 因为编译器优化的存在 特别是其中的返回值优化 Return Value Optimization RVO 使你不需要额外关注左值与右值的区别 像
  • Idea新建项目名后出现中括号别名

    Idea新建项目名后出现中括号别名 1 修改pom xml文件的 artifactId标签 和项目名一致 2 项目名出现中括号是因为iml文件名和项目文件名不一样 需要更改iml文件名即可
  • 开关稳压DC—DC降压电路简介

    在做数字压力开关项目时 电源输入要求是12V 24V 10 系统内需要5V和3 3V的电源 这时提供了三个方案从中选择 方案一 使用24V 5V和5V 3 3V的LDO线性稳压芯片 方案二 使用24V 12V 12V 5V 5V 3 3V种