开关电源环路稳定性分析(10)——OPA和OTA型补偿器传递函数

2023-11-01

大家好,这里是大话硬件。

在前面9讲的内容中将开关电源环路分析进行了梳理,我相信很多人即使都看完了,应该还是不会设计,而且还存在几个疑问。比如我随便举几个:

开关电源的带宽怎么设定?开关电源精度和什么相关?怎么调节动态响应?动态响应和什么有关系等等。

我在学习的过程中也一样,对这部分内容充满了疑问。因此,后面关于环路分析的内容,主要是针对开关电源系统中比较难理解的,常见的,经常在设计产品时遇到的问题,进行再一次的分析。

这里非常欢迎大家留言提出疑问,我会针对这些疑问专门写文章来分析。

1.OPA型补偿网络

在前面推导OPA环路传递函数使用的拓扑如下

在这里插入图片描述

推导过程:

在这里插入图片描述

疑问1:为什么传递函数中下分压电阻没参与传递函数?

2.OTA型补偿网络

在前面推导OTA型环路传递时,使用的拓扑如下

在这里插入图片描述

推导过程:
在这里插入图片描述

疑问2:为什么传递函数中下分压电阻参与了传递函数?

不知道大家如何看待上面OPA型和OTA型这两种差异,或者是如何理解这种差异。反正我在推导的理解的过程中产生了这样的疑问。

虽然从结果看,这样的分析确实是对的,但是深层次的原因是什么,如何解释,下面将重点分析。

理解思路1:从电路理论的角度来分析
在这里插入图片描述

假设输出电压Vout由于负载的波动存在电压变化,用ΔVo来表示,此时会在Z1上流过一定的电流,在Rf2上流过一定的电流,还有一部分电流流过Z2。因此根据基尔霍夫定律可知:

在这里插入图片描述

在这里插入图片描述

使用运算放大器作为补偿器件,而且是负反馈的形式,那么就存在虚短和虚断的特性。这是因为运放的开环增益Aol无穷大,加上负反馈的存在,必须有正相端的电压和负相端的电压相等。

根据虚断:可以证明上述基尔霍夫定律是成立的;

根据虚短:在负相端的电压会保持一直和正相端的电压相同,也就是Vref的值,而Vref的值无论是直流还是交流,都一直保持不变,所以:

在这里插入图片描述

理解思路2:从叠加定理的角度来分析

在OPA型的环路补偿拓扑中,有直流电压Vref,且不随频率改变,而环路补偿属于小信号分析,随着频率改变,输出电压Vcont其实既有直流成分,也有交流成分,可以写成下面的表达式:

在这里插入图片描述

在反馈系统中存在直流电压Vref,交流变化信号Vout,因此,使用叠加定理

在这里插入图片描述

在这里插入图片描述

叠加后
在这里插入图片描述

从Vcont的表达式可以看出来,误差放大器输出电压既有直流成分,也有交流成分。我们需要求解的是Vcont和Vout的传递函数。此时可以将上述的函数写成Y=kX+b的形式,对Y求X的微分可以得到:

在这里插入图片描述

所以,对于OPA型的拓扑来说,无论是从基尔霍夫定律定理的角度还是从叠加定理的角度来分析,下面的电阻Rf2确实没有参与到反馈电路中。但是这个电阻并不是一无是处。设定输出电压值的时候,需要使用这个电阻。

上面的分析解释了为什么OPA型下面的电阻未参与传递函数的求解。

OTA型的拓扑结构如下所示,这种结构的传递函数有R2的参数,这是为什么?
在这里插入图片描述

要分析这个原因,需要理解跨导型运算放大器和通用型运算放大器的差异,通用型的运算放大器的开环增益无穷大,运放无论在什么情况下都会调节同相和反相端的电压相等。而跨导型的特性由跨导因子决定Gm,跨导型的运算放大器是一个压控电流源。

内部电路简化等效电路如下:

在这里插入图片描述
在这里插入图片描述

因此,跨导型的传递函数,不存在虚短和虚断,同相端的电压和反相端的电压都会参与到运算中,在该拓扑中下面的电阻必须参与传递函数。相对来说也比较好理解。

3.总结:

OPA和OTA型的拓扑结构在开关电源环路补偿中都在使用,在推导传递函数时,需要注意下分压电阻,器件的特性差异决定了下分压电阻是否需要参与到环路的传递函数中。理解器件的本质是分析两种拓扑差异的理论支撑。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

开关电源环路稳定性分析(10)——OPA和OTA型补偿器传递函数 的相关文章

  • DC-DC直流斩波---BUCK降压斩波电路

    降压斩波电路 Buck Chopper 的原理图及工作波形 该电路使用一个全控型器件V 图中为IGBT 也可使用其他器件 若采用晶闸管 需设置使晶闸管关断的辅助电路 图5 1中 为在V关断时给负载中电感电流提供通道 设置了续流二极管VD 斩
  • STM32F103移相全桥PWM寄存器实现

    STM32F103移相全桥PWM寄存器实现 由于项目需求需要使用单片做一个移相全桥的DCDC电源 采用STM32F103芯片 采用直接控制寄存器实现PWM移相控制 基本原理 两桥臂分别使用定时器TIM1和TIM8产生互补输出信号 TIM8作
  • 05、建立模块

    在上一节中 我们学会了在电路图中嵌入了计算公式 本节我们将在此基础上 将闭环BUCK电路的反馈网络建立成一个模块 然后我们以后就可以直接调用模块来实现电路的设计了 好了 下面我们就一步一步的来实现此功能吧 Step 01 建立一个原理图文件
  • AC-DC--------单相可控整流电路

    带电阻负载的工作情况 原理图 波形图 在分析整流电路工作时 认为晶闸管 开关器件 为理想器件 即晶闸管导通时其管压降等于零 晶闸管阻断时其漏电流等于零 除非特意研究晶闸管的开通 关断过程 一般认为晶闸管的开通与关断过程瞬时完成 工作原理 改
  • 讨论BUCK、BOOST、BUCK-BOOST电路CCM模式下的设计参数计算

    BUCK BUCK电路的设计技术指标要求 要求工作于电感电流连续工作模式 输入直流电压 V 输出直流电压 V 最大输出电流 A 最小输出电流 输出电压纹波峰峰值 开关频率 主电路参数设计目标 电感参数设计 求得电感量与最大有效值电流 最大峰
  • 单端正激(Forward)变换器的工作原理&CCM模式下电路设计参数计算

    前面介绍的几种拓扑的输入和输出都是没有隔离的 单端正激 Forward 变换器是在buck的基础上加入变压器隔离 单端 变压器磁通仅在单方向变化 正激 开关管导通时电源将能量直接传送给负载 单端正激 Forward 变换器的工作原理 单端正
  • 开关电源基本原理和种类-反激-正激

    不可不知的几种开关电源及工作原理 前面分享了部分开关电源的基础知识 里面经常涉及不同种类的开关电源 虽然说 开关电源再怎么变 原理都一样 但过程细节总有区别 比如说 石墨和钻石都是同一种元素 碳 但性质有天地之别 扯远了 这次 我总结归纳了
  • 开关电源环路稳定性分析(05)-传递函数

    大家好 这里是大话硬件 经过前面4篇文章的梳理 估计很多人已经等不及了 什么时候可以开始环路的分析 为了尽快进入到大家关心的部分 这一讲我们正式进入环路分析的第一部分 传递函数 传递函数 简单的理解就是输入和输出之间的关系 为了方便我们仅仅
  • 开关电源环路稳定性分析(11)——观察法找零极点

    大家好 这里是大话硬件 这篇文章主要是分享如何用观察法直接写出补偿网络中的零极点的表达式 在前面的文章中 我们分别整理了OTA和OPA型的补偿网络 当时有下面的结论 针对某个固定的补偿网络 我们可以用数学的方法推导补偿网络的零极点 比如下面
  • 【开关电源一】电源拓扑之buck、boost、buck-boost

    个人主页 highman110 作者简介 一名硬件工程师 持续学习 不断记录 保持思考 输出干货内容 目录 1 BUCK变换器 1 1 Buck电路工作原理 1 2 Buck电路输入输出关系推导 2 BOOST变换器 2 1 Boost电路
  • 详解Boost电路的基本原理

    Boost电路是一种开关直流升压电路 它能够使输出电压高于输入电压 在电子电路设计当中算是一种较为常见的电路设计方式 本篇文章针对新手 将为大家介绍Boost升压电路的工作原理 首先我们需要知道 电容阻碍电压变化 通高频 阻低频 通交流 阻
  • MOS管栅极驱动电流计算

    我们知道MOS管是电压控制的 从理论上MOS管电流为零 但是半导体不是理想器件 不可避免的会存在一些寄生参数 阅读LT芯片手册可以知道 栅极驱动电流公式如下图 Fsw为开关频率 Qg为mos管栅极充满所需电荷 MOS管以BSC109N10N
  • 开关电源纹波的产生、测量和抑制

    一 产生分析 1 随着SWITCH 的开关 电感L 中的电流也是在输出电流的有效值上下波动的 所以在输出端也会出现一个与SWITCH 同频率的纹波 一般所说的纹波就是指这个 它与输出电容的容量和ESR 有关系 这个纹波的频率与开关电源相同
  • 单端反激(Flyback)变换器的工作原理

    反激 Flyback 型电路的结构见图2 40 该电路可以看成是将boost buck电路中的电感换成相互耦合的电感N1和N2得到的 因此反激型电路中的变压器在工作中总是经历着储能一放电的过程 电流工作在连续模式CCM 它与正激电路不同的地
  • 开关稳压DC—DC降压电路简介

    在做数字压力开关项目时 电源输入要求是12V 24V 10 系统内需要5V和3 3V的电源 这时提供了三个方案从中选择 方案一 使用24V 5V和5V 3 3V的LDO线性稳压芯片 方案二 使用24V 12V 12V 5V 5V 3 3V种
  • 【软件工程师学硬件】之 开关电源(4) —— 初识Viper12a

    Viper12a是一个很不错的电源芯片 至少我是这样认为的 当然了 肯定有很多其他的很好的电源芯片 我之所以以Viper12a为例 一方面是其电路简单 便于说明问题 其次它用得比较广 什么电磁炉 影碟机上面电源芯片大部分都是它 其三价格也比
  • DCDC电源设计中需要考虑的问题

    一 电子开关设计 1 为什么用MOS管做开关管 2 MOS驱动电路用图腾柱还是用推挽电路 3 MOS悬浮电压设计思想以及工作原理 二 PWM驱动波形 1 频率如何设置 2 占空比如何调整 3 三角波生成电路如何设计 4 比较器参考电压如何选
  • 开关电源环路学习笔记(6)-开关变换器传递函数Gvd(s)推导过程

    终于到了最关键的环节 也是最难的环节 如何求出开关级的传递函数 也就是下图这一级 哎 不得不说 太难了 不过没办法 先前夸下海口 跟兄弟们说我要把环路搞清楚 现在搞不动也得搞啊 这一级之所以这么难 主要是有开关元器件 本身是非线性的 当然了
  • 开关电源环路稳定性分析(2)-从开环到闭环

    大家好 这里是大话硬件 在上一节中 基于欧姆定律 基尔霍夫定律 伏秒平衡这些已知的知识点 可以推导出Buck变换器的输入输出关系 今天这一节 我们还是从全局的概念来解析开关电源 1 运放和开关电源 如果一上来就分析开关电源的环路稳定性 我估
  • 开关稳压电源设计

    文末下载完整资料 摘要 本设计应用隔离型回扫式DC DC电源变换技术完成开关稳压电源的设计及制作 系统主要由整流滤波电路 DC DC变换电路 单片机显示与控制电路三部分组成 开关电源的集成控制由脉宽调制控制芯片UC3843及相关电路完成 利

随机推荐