arm MMU详解

2023-05-16

一、MMU的产生

      许多年以前,当人们还在使用DOS或是更古老的操作系统的时候,计算机的内存还非常小,一般都是以K为单位进行计算,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序。但随着图形界面的兴起还用用户需求的不断增大,应用程序的规模也随之膨胀起来,终于一个难题出现在程序员的面前,那就是应用程序太大以至于内存容纳不下该程序,通常解决的办法是把程序分割成许多称为覆盖块overlay)的片段。覆盖块0首先运行,结束时他将调用另一个覆盖块。虽然覆盖块的交换是由OS完成的,但是必须先由程序员把程序先进行分割,这是一个费时费力的工作,而且相当枯燥。人们必须找到更好的办法从根本上解决这个问题。不久人们找到了一个办法,这就是虚拟存储器(virtual memory).虚拟存储器的基本思想是程序,数据,堆栈的总的大小可以超过物理存储器的大小,操作系统把当前使用的部分保留在内存中,而把其他未被使用的部分保存在磁盘上。比如对一个16MB的程序和一个内存只有4MB的机器,OS通过选择,可以决定各个时刻将哪4M的内容保留在内存中,并在需要时在内存和磁盘间交换程序片段,这样就可以把这个16M的程序运行在一个只具有4M内存机器上了。而这个16M的程序在运行前不必由程序员进行分割。


      任何时候,计算机上都存在一个程序能够产生的地址集合,我们称之为地址范围。这个范围的大小由CPU的位数决定,例如一个32位的CPU,它的地址范围是0~0xFFFFFFFF (4G)而对于一个64位的CPU,它的地址范围为0~0xFFFFFFFFFFFFFFFF (64T),这个范围就是我们的程序能够产生的地址范围,我们把这个地址范围称为虚拟地址空间,该空间中的某一个地址我们称之为虚拟地址。与虚拟地址空间和虚拟地址相对应的则是物理地址空间和物理地址,大多数时候我们的系统所具备的物理地址空间只是虚拟地址空间的一个子集,这里举一个最简单的例子直观地说明这两者,对于一台内存为256MB的32bit x86主机来说,它的虚拟地址空间范围是0~0xFFFFFFFF(4G),而物理地址空间范围是0x000000000~0x0FFFFFFF(256MB)。


      在没有使用虚拟存储器的机器上,虚拟地址被直接送到内存总线上,使具有相同地址的物理存储器被读写。而在使用了虚拟存储器的情况下,虚拟地址不是被直接送到内存地址总线上,而是送到内存管理单元——MMU(主角终于出现了)。他由一个或一组芯片组成,一般存在与协处理器中,其功能是把虚拟地址映射为物理地址

 

二、MMU工作过程

      大多数使用虚拟存储器的系统都使用一种称为分页(paging)的技术。虚拟地址空间划分成称为页(page)的单位,而相应的物理地址空间也被进行划分,单位是页框(frame).页和页框的大小必须相同。接下来配合图片我以一个例子说明页与页框之间在MMU的调度下是如何进行映射的:

      在这个例子中我们有一台可以生成16位地址的机器,它的虚拟地址范围从0x0000~0xFFFF(64K),而这台机器只有32K的物理地址,因此他可以运行64K的程序,但该程序不能一次性调入内存运行。这台机器必须有一个达到可以存放64K程序的外部存储器(例如磁盘或是FLASH)以保证程序片段在需要时可以被调用。在这个例子中,页的大小为4K,页框大小与页相同(这点是必须保证的,内存和外围存储器之间的传输总是以页为单位的),对应64K的虚拟地址和32K的物理存储器,他们分别包含了16个页和8个页框。


      我们先根据上图解释一下分页后要用到的几个术语,在上面我们已经接触了页和页框,上图中绿色部分是物理空间,其中每一格表示一个物理页框。橘黄色部分是虚拟空间,每一格表示一个页,它由两部分组成,分别是Frame Index(页框索引)和位p(present 存在位),Frame Index的意义很明显,它指出本页是往哪个物理页框进行映射的,位p的意义则是指出本页的映射是否有效,如上图,当某个页并没有被映射时(或称映射无效,Frame Index部分为X),该位为0,映射有效则该位为1。


    我们执行下面这些指令(本例子的指令不针对任何特定机型,都是伪指令)
例1:
    MOVE REG,0 //将0号地址的值传递进寄存器REG.
    虚拟地址0将被送往MMU,MMU看到该虚地址落在页0范围内(页0范围是0到4095),从上图我们看到页0所对应(映射)的页框为2(页框2的地址范围是8192到12287),因此MMU将该虚拟地址转化为物理地址8192,并把地址8192送到地址总线上。内存对MMU的映射一无所知,它只看到一个对地址8192的读请求并执行它。MMU从而把0到4096的虚拟地址映射到8192到12287的物理地址。


例2:
    MOVE REG,8192
    被转换为
    MOVE REG,24576 
    因为虚拟地址8192在页2中,而页2被映射到页框6(物理地址从24576到28671)


例3:
    MOVE REG,20500
    被转换为
    MOVE REG,12308
    虚拟地址20500在虚页5(虚拟地址范围是20480到24575)距开头20个字节处,虚页5映射到页框3(页框3的地址范围是 12288到16383),于是被映射到物理地址12288+20=12308。


      通过适当的设置MMU,可以把16个虚页隐射到8个页框中的任何一个,但是这个方法并没有有效的解决虚拟地址空间比物理地址空间大的问题。从上图中我们可以看到,我们只有8个页框(物理地址),但我们有16个页(虚拟地址),所以我们只能把16个页中的8个进行有效的映射。我们看看例4会发生什么情况

      MOV REG,32780
      虚拟地址32780落在页8的范围内,从上图总我们看到页8没有被有效的进行映射(该页被打上X),这是又会发生什么?MMU注意到这个页没有被映射,于是通知CPU发生一个缺页故障(page fault).这种情况下操作系统必须处理这个页故障,它必须从8个物理页框中找到1个当前很少被使用的页框并把该页框的内容写入外围存储器(这个动作被称为page copy),随后把需要引用的页(例4中是页8)映射到刚才释放的页框中(这个动作称为修改映射关系),然后从新执行产生故障的指令(MOV REG,32780)。假设操作系统决定释放页框1,那么它将把虚页8装入物理地址的4-8K,并做两处修改:首先把标记虚页1未被映射(原来虚页1是被影射到页框1的),以使以后任何对虚拟地址4K到8K的访问都引起页故障而使操作系统做出适当的动作(这个动作正是我们现在在讨论的),其次他把虚页8对应的页框号由X变为1,因此重新执行MOV REG,32780时,MMU将把32780映射为4108。


      我们大致了解了MMU在我们的机器中扮演了什么角色以及它基本的工作内容是什么,下面我们将举例子说明它究竟是如何工作的(注意,本例中的MMU并无针对某种特定的机型,它是所有MMU工作的一个抽象)。


    首先明确一点,MMU的主要工作只有一个,就是把虚拟地址映射到物理地址。
我们已经知道,大多数使用虚拟存储器的系统都使用一种称为分页(paging)的技术,就象我们刚才所举的例子,虚拟地址空间被分成大小相同的一组页,每个页有一个用来标示它的页号(这个页号一般是它在该组中的索引,这点和C/C++中的数组相似)。在上面的例子中0~4K的页号为0,4~8K的页号为1,8~12K的页号为2,以此类推。而虚拟地址(注意:是一个确定的地址,不是一个空间)被MMU分为2个部分,第一部分是页号索引(page Index),第二部分则是相对该页首地址的偏移量(offset). 。我们还是以刚才那个16位机器结合下图进行一个实例说明,该实例中,虚拟地址8196被送进MMU,MMU把它映射成物理地址。16位的CPU总共能产生的地址范围是0~64K,按每页4K的大小计算,该空间必须被分成16个页。而我们的虚拟地址第一部分所能够表达的范围也必须等于16(这样才能索引到该页组中的每一个页),也就是说这个部分至少需要4个bit。一个页的大小是4K(4096),也就是说偏移部分必须使用12个bit来表示(2^12=4096,这样才能访问到一个页中的所有地址),8196的二进制码如下图所示:


      该地址的页号索引为0010(二进制码),既索引的页为页2,第二部分为000000000100(二进制),偏移量为4。页2中的页框号为6(页2映射在页框6,见上图),我们看到页框6的物理地址是24~28K。于是MMU计算出虚拟地址8196应该被映射成物理地址24580(页框首地址+偏移量=24576+4=24580)。同样的,若我们对虚拟地址1026进行读取,1026的二进制码为0000010000000010,page index="0000"=0,offset=010000000010=1026。页号为0,该页映射的页框号为2,页框2的物理地址范围是8192~12287,故MMU将虚拟地址1026映射为物理地址9218(页框首地址+偏移量=8192+1026=9218)。以上就是MMU的工作过程。

三、S3C24XX的MMU工作过程


    下面我们针对s3c2410的MMU(注1)进行讲解。
    S3c2410总共有4种内存映射方式,分别是:
    1.Fault (无映射)
    2.Coarse Page (粗表)
    3.Section (段)
    4.Fine Page (细表)
    我们以Section(段)进行说明。
    ARM920T是一个32bit的CPU,它的虚拟地址空间为2^32=4G。而在Section模式,这4G的虚拟空间被分成一个一个称为段(Section)的单位(与我们上面讲的页在本质上其实是一致的),每个段的长度是1M (而我们之前所使用的页的长度是4K)。4G的虚拟内存总共可以被分成4096个段(1M*4096=4G),因此我们必须用4096个描述符来对这组段进行描述,每个描述符占用4个Byte,故这组描述符的大小为16KB (4byte*4096),这4096个描述符构为一个表格,我们称其为Tralaton Table.

    上图是描述符的结构
    Section base address:段基地址(相当于页框号首地址)
    AP: 访问控制位Access Permission
    Domain: 访问控制寄存器的索引。Domain与AP配合使用,对访问权限进行检查
    C:当C被置1时为write-through (WT)模式
    B: 当B被置1时为write-back (WB)模式(C,B两个位在同一时刻只能有一个被置1)
    下面是s3c2410内存映射后的一个示意图:

      我的s3c2410上配置的SDRSAM大小为64M,该SDRAM的物理地址范围是0x3000 0000~0x33FF FFFF(属于Bank 6),由于1个Section的大小是1M,所以该物理空间可以被分成64个物理段(页框).


      在Section模式下,送进MMU的虚拟地址(注1)被分为两部分(这点和我们上面举的例子是一样的),这两部分为 Descriptor Index(相当于上面例子的Page Index)和 Offset,descript index长度为12bit(2^12=4096,从这个关系式你能看出什么?:) ),Offset长度为20bit(2^20=1M,你又能看出什么?:)).观察一下一个描述符(Descriptor)中的Section Base Address部分,它长度为12 bit,里面的值是该虚拟段(页)映射成的物理段(页框)的物理地址前12bit,由于每一个物理段的长度都是1M,所以物理段首地址的后20bit总是为0x00000(每个Section都是以1M对齐),确定一个物理地址的方法是 物理页框基地址+虚拟地址中的偏移部分=Section Base Address<<20+Offset,呵呵,可能你有点糊涂了,还是举一个实际例子说明吧。

      假设现在执行指令MOV REG, 0x30000012,虚拟地址的二进制码为00110000 00000000 00000000 00010010,前12位是Descriptor Index= 00110000 0000=768,故在Translation Table里面找到第768号描述符,该描述的Section Base Address="0x0300",也就是说描述符所描述的虚拟段(页)所映射的物理段(页框)的首地址为0x3000 0000(物理段(页框)的基地址=Section Base Address左移20bit=0x0300<<20=0x3000 0000),而Offset=000000 00000000 00010010=0x12,故虚拟地址0x30000012映射成的物理地址=0x3000 0000+0x12=0x3000 0012(物理页框基地址+虚拟地址中的偏移)。你可能会问怎么这个虚拟地址和映射后的物理地址一样?这是由我们定义的映射规则所决定的。在这个例子中我们定义的映射规则是把虚拟地址映射成和他相等的物理地址。我们这样书写映射关系的代码:
void mem_mapping_linear(void)
{
    unsigned long descriptor_index, section_base, sdram_base, sdram_size;
    sdram_base=0x30000000;
    sdram_size=0x 4000000;
    for (section _base= sdram_base,descriptor_index = section _base>>20;
         section _base < sdram_base+ sdram_size; 
         descriptor_index+=1;section _base +=0x100000)
    {
         *(mmu_tlb_base + (descriptor_index)) = (section _base>>20) | MMU_OTHER_SECDESC;
    }
}


      上面的这段段代码把虚拟空间0x3000 0000~0x33FF FFFF映射到物理空间0x3000 0000~0x33FF FFFF,由于虚拟空间与物理空间空间相吻合,所以虚拟地址与他们各自对应的物理地址在值上是一致的。当初始完Translation Table之后,记得要把Translation Table的首地址(第0号描述符的地址)加载进协处理器CP15的Control Register2(2号控制寄存器)中,该控制寄存器的名称叫做Translation table base (TTB) register。


      以上讨论的是descriptor中的Section Base Address以及虚拟地址和物理地址的映射关系,然而MMU还有一个重要的功能,那就是访问控制机制(Access Permission )。简单说访问控制机制就是CPU通过某种方法判断当前程序对内存的访问是否合法(是否有权限对该内存进行访问),如果当前的程序并没有权限对即将访问的内存区域进行操作,则CPU将引发一个异常,s3c2410称该异常为Permission fault,x86架构则把这种异常称之为通用保护异常(General Protection),什么情况会引起Permission fault呢?比如处于User级别的程序要对一个System级别的内存区域进行写操作,这种操作是越权的,应该引起一个Permission fault,搞过x86架构的朋友应该听过保护模式(Protection Mode),保护模式就是基于这种思想进行工作的,于是我们也可以这么说:s3c2410的访问控制机制其实就是一种保护机制。那s3c2410的访问控制机制到底是由什么元素去参与完成的呢?它们间是怎么协调工作的呢?这些元素总共有:
    1.协处理器CP15中Control Register3:DOMAIN ACCESS CONTROL REGISTER 
    2.段描述符中的AP位和Domain位
    3.协处理器CP15中Control Register1(控制寄存器1)中的S bit和R bit 
    4.协处理器CP15中Control Register5(控制寄存器5)
    5.协处理器CP15中Control Register6(控制寄存器6)
    DOMAIN ACCESS CONTROL REGISTER 是访问控制寄存器,该寄存器有效位为32,被分成16个区域,每个区域由两个位组成,他们说明了当前内存的访问权限检查的级别,如下图所示:


      每区域可以填写的值有4个,分别为00,01,10,11(二进制),他们的意义如下所示:


    00:当前级别下,该内存区域不允许被访问,任何的访问都会引起一个domain fault
    01:当前级别下,该内存区域的访问必须配合该内存区域的段描述符中AP位进行权检查
    10:保留状态(我们最好不要填写该值,以免引起不能确定的问题)
    11:当前级别下,对该内存区域的访问都不进行权限检查。
      我们再来看看discriptor中的Domain区域,该区域总共有4个bit,里面的值是对DOMAIN ACCESS CONTROL REGISTER中16个区域的索引.而AP位配合S bit和A bit对当前描述符描述的内存区域被访问权限的说明,他们的配合关系如下图所示:


    AP位也是有四个值,我结合实例对其进行说明.
    在下面的例子中,我们的DOMAIN ACCESS CONTROL REGISTER都被初始化成0xFFFF BDCF,如下图所示:


例1:
Discriptor 中的domain=4,AP=10(这种情况下S bit ,A bit 被忽略)
假设现在我要对该描述符描述的内存区域进行访问:
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
假设当前CPU处于Supervisor模式下,则程序可以对该描述符描述的内存区域进行读写操作。
假设当前CPU处于User模式下,则程序可以对该描述符描述的内存进行读访问,若对其进行写操作则引起一个permission fault.

例2:
Discriptor 中的domain=0,AP=10(这种情况下S bit ,A bit 被忽略)
domain=0,而DOMAIN ACCESS CONTROL REGISTER中field 0的值是11,系统对任何内存区域的访问都不进行访问权限的检查。
由于统对任何内存区域的访问都不进行访问权限的检查,所以无论CPU处于何种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都可以顺利地进行读写操作

例3:Discriptor 中的domain=4,AP=11(这种情况下S bit ,A bit 被忽略)
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
由于AP=11,所以无论CPU处于合种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都可以顺利地进行读写操作

例4:
Discriptor 中的domain=4,AP=00, S bit="0",A bit="0"
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
由于AP=00,S bit="0",A bit="0",所以无论CPU处于合种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都只能进行读操作,否则引起permission fault.
通过以上4个例子我们得出两个结论:
1.对某个内存区域的访问是否需要进行权限检查是由该内存区域的描述符中的Domain域决定的。
2.某个内存区域的访问权限是由该内存区域的描述符中的AP位协处理器CP15中Control Register1(控制寄存器1)中的S bit和R bit所决定的。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

arm MMU详解 的相关文章

  • 哪些变量类型/大小在 STM32 微控制器上是原子的?

    以下是 STM32 微控制器上的数据类型 http www keil com support man docs armcc armcc chr1359125009502 htm http www keil com support man d
  • DSP 库 - RFFT - 奇怪的结果

    最近我一直在尝试在我的STM32F4 Discovery评估板上进行FFT计算 然后将其发送到PC 我已经调查了我的问题 我认为我对制造商提供的 FFT 函数做错了 我正在使用 CMSIS DSP 库 现在我一直在用代码生成样本 如果工作正
  • Linux 如何在 x86-64 中支持超过 512GB 的虚拟地址范围?

    Linux 中 x86 64 的用户虚拟地址空间为 47 位长 这本质上意味着 Linux 可以映射大约 128 TB 虚拟地址范围的进程 然而 令我困惑的是 x86 64 架构支持 ISA 为每个进程定义的 4 级分层页表 排列为基数树
  • GCC ARM 汇编预处理器宏

    我正在尝试使用汇编 ARM 宏进行定点乘法 define MULT a b asm volatile SMULL r2 r3 0 1 n t ADD r2 r2 0x8000 n t ADC r3 r3 0 n t MOV 0 r2 ASR
  • C 嵌入式应用程序中 time() 函数的问题

    我在用time 在 ARM 微控制器上 处理器一到达此函数就会重新启动 奇怪的是 当我处于调试模式时 代码运行得很好 但一旦我想将其应用到独立模式 我就会遇到重置 我是否忽略了什么 这个功能有替代品吗 代码部分是这样的 include
  • 读取和打印手臂组件中的字符串

    我正在使用 ARMSim 刚刚开始学习汇编 所以如果我看起来一无所知 请原谅我 但我正在尝试从输入文件中读取字符串 然后将其打印到输出屏幕 到目前为止我有 equ SWI Open 0x66 open a file equ SWI Clos
  • Linux malloc() 在 ARM 和 x86 上的行为是否不同?

    这个网站上有很多关于内存分配的问题 但是我 找不到专门解决我的问题的人 这 问题 https stackoverflow com questions 19148296 linux memory overcommit details似乎最接近
  • 分析 Cortex-M7 (stm32f7) 上的 memcpy 性能

    简洁版本 从 GNU ARM 工具链中提取的 memcpy 的性能指标在 ARM Cortex M7 上对于不同的副本大小似乎差异很大 即使复制数据的代码始终保持不变 这可能是什么原因造成的 长版 我是使用 GNU Arm 工具链 11 2
  • ARM 调用约定是否允许函数不将 LR 存储到堆栈中?

    正如标题所示 我在理解 ARM 架构的调用约定时遇到问题 特别是 我仍然很难知道当你调用子程序时 LR 寄存器会发生什么 我认为 当您进入子程序时 处理 LR 寄存器的最明显 最安全的方法是将其存储到堆栈中 但该行为没有出现在文档中 因此我
  • 如何使用 Neon SIMD 将无符号字符转换为有符号整数

    如何转换变量的数据类型uint8 t to int32 t使用霓虹灯 我找不到执行此操作的任何内在因素 假设您想要将 16 x 8 位整数的向量转换为 4 个 4 x 32 位整数的向量 您可以通过首先解压缩为 16 位 然后再次解压缩为
  • 了解 ctags 文件格式

    我使用 Exhuberant ctags 来索引我的 c 项目中的所有标签 c project 是 Cortex M7 微控制器的嵌入式软件 结果是一个标签文件 我正在尝试阅读该文件并理解所写的内容 根据我找到的 ctags 和 Exhub
  • 为什么当大小大于 50 时,该程序花费的时间会呈指数级增长?

    所以我正在为类编写一个 ARM 汇编快速排序方法 我对大部分内容都有了解 除了复杂性没有意义 我们将其与我们制作的另一种冒泡排序方法进行比较 它对于具有 1 个参数和 10 个参数的示例表现更好 然而 我什至无法比较 100 个参数测试 因
  • ARM 系统调用的接口是什么?它在 Linux 内核中的何处定义?

    我读过有关 Linux 中的系统调用的内容 并且到处都给出了有关 x86 架构的描述 0x80中断和SYSENTER 但我无法追踪 ARM 架构中系统调用的文件和进程 任何人都可以帮忙吗 我知道的几个相关文件是 arch arm kerne
  • ARM Chromebook 上的 Android 开发环境?

    我尝试了多次安装和使用安卓工作室 https developer android com studio index html on an ARM Chromebook C100P https archlinuxarm org platfor
  • 设备树不匹配:.probe 从未被调用

    我无法理解设备树的工作原理 或者具体来说为什么该驱动程序无法初始化 这是在 android 版本 3 10 的 rockchip 供应商内核中 驱动程序 看门狗 rk29 wdt c 为了可读性而减少 static const struct
  • 让 TensorFlow 在 ARM Mac 上使用 GPU

    我已经安装了TensorFlow在 M1 上 ARM Mac 根据这些说明 https github com apple tensorflow macos issues 153 一切正常 然而 模型训练正在进行CPU 如何将培训切换到GPU
  • 错误:-march= 开关的值错误

    我写了一个Makefile 但无法让它工作 我有一个选项应该选择编译到哪个处理器 然而 当我跑步时make从命令行它说 tandex tandex P 6860FX emulators nintendo sdks 3DS SDK HomeB
  • 直接写入 ARM Cortex A8 分支预测器中的全局历史缓冲区 (GHB) 或 BTB?

    我有兴趣直接修改 Cortex A8 上的 BTB 分支目标缓冲区 和 GHB 的内容 ARM 手册上有这样的内容 要在指令端 GHB 数组中写入一项 例如 LDR R0 0x3333AAAA MCR p15 0 R0 c15 c1 0 M
  • 什么是 .axf 文件?

    我是arm架构的新手 我从事嵌入式软件工作 并试图了解我的项目二进制文件的调试文件夹中存在的 axf文件 发现它是链接器在构建过程中生成的arm可执行格式文件 用于调试崩溃 所以很明显它包含了一些调试信息 但不清楚具体是什么信息 而且deb
  • 更新 MMU 转换表的正确方法是什么

    我在我的 s3c2440 板上启用了 MMU 3G 4G 内存 故障属性 当我没有读 写 3G 4G 内存时一切都很好 所以为了测试页面错误向量 我写入了 0xFF 3G地址 正如我所料 我从FSR中得到了正确的值 所以我在 do page

随机推荐

  • Django settings.py配置总结

    1 版本 xff1a 1 8 9 2 解决数据库时间和当前系统时间不一致问题 设置USE TZ 61 False 3 时区配置 xff1a TIME ZONE 61 39 Asia Shanghai 39 4 静态文件js css等的引用路
  • Extern关键字在vscode中不生效的解决办法

    今天回顾extern关键字的时候遇到一个问题 a c里的代码 b c里的代码 这么简单的几个代码 vscode竟然给我报错 为什么 抱着这个问题去逛了下csdn 终于让我找到了问题所在 原来vscode默认只能对单文件编译 即使俩文件在同一
  • 头文件、源文件 及extern的使用

    头文件与源文件的作用 1 编译器的工作过程 简单的说其实要理解C文件与头文件 xff08 即 h xff09 有什么不同之处 xff0c 首先需要弄明白编译器的工作过程 xff0c 一般说来编译器会做以下几个过程 xff1a 1 预处理阶段
  • 从零开始的三维激光雷达SLAM教程第二讲(搭建Gazebo仿真环境,并添加动态障碍物)

    文章目录 引言第二节 xff1a 搭建仿真环境下载velodyne激光模拟功能包安装turtlebot3模拟器安装三维激光雷达到turtlebot3上构建Gazebo地图添加动态障碍物操作机器人建图最终效果 引言 毕业设计打算做三维激光SL
  • 一个简单的基础通信协议的设计与实现

    一个简单的基础通信协议的设计与实现 一种常见的通信协议格式搭建串口收发环境配置STM32CubeMX添加USART部分代码 通信协议的实现 不同设备之间的通信 xff0c 都需要设计自己的通信协议 为了保证设备与设备之间的数据的稳定传输 x
  • 串口调试助手之间通信和接受、发送数据

    最近在用串口调试助手的时候在网上找了好多资料和教程都没有一个完整的 xff0c 就来写个完整的串口调试助手资料给刚入门或者刚接触的小白 xff0c 希望有所帮助 xff01 1 准备好串口调试助手 和 虚拟串口驱动 软件VirtualSer
  • win10下vs2019编译使用boost库v1_75_0

    boost介绍 Boost库是为C 43 43 语言标准库提供扩展的一些C 43 43 程序库的总称 boost是一个准标准库 xff0c 相当于STL的延续和扩充 xff0c 它的设计理念和STL比较接近 xff0c 都是利用泛型让复用达
  • vscode格式化C++代码方法

    参考 xff1a https blog csdn net wydxry article details 125191171 格式操作 解决方法 xff1a 按下组合键ctrl 43 shift 43 p 在弹出的搜索窗口中输入format
  • OpenCV基本介绍和安装

    OpenCV是一个通用 开源 功能强大的图像处理和计算机视觉库 官方网站 xff1a Home OpenCV 1999年 加里 布拉德斯基在Intel公司创建了计算机视觉库 xff08 Computer Vision Library xff
  • java jni ubuntu 环境搭建时遇到的坑

    1 xff1a 版本不一致遇到的坑 javah的版本需要同javac的版本一致 如果版本的问题搞不定 xff0c 直接用andorid source build之后的环境即可 2 xff1a javah使用遇到的坑 jni中字段描述符可以使
  • jni中native通过adb输出

    本文主要实践了如何在jni中打印log xff0c 贴源码 xff1a Android mk主要是巴拉的android源码中的app LOCAL PATH 61 call my dir include CLEAR VARS TARGET P
  • 关于服务器端用C语言实现TCP的数据接收

    关于这个 xff0c 真的是踩过很多坑 xff0c 罗列了一下要注意的点 xff1a 代码前面一定要添加库 xff0c 不然会出很多错 pragma comment lib 34 Ws2 32 lib 34 这段代码在vs2017中怎么也编
  • linux中断&poll&selcet按键处理机制

    在上一篇linux按键中断处理中 xff0c 我们采用按键中断处理获取按键 xff0c 在read函数中阻塞读取 xff0c 当按键发生时 xff0c read自动解除阻塞 xff0c 实现应用层读取到相应的按键值 在上一节中如果没有按键到
  • linux中断&poll&selcet按键处理机制

    在上一篇linux按键中断处理中 xff0c 我们采用按键中断处理获取按键 xff0c 在read函数中阻塞读取 xff0c 当按键发生时 xff0c read自动解除阻塞 xff0c 实现应用层读取到相应的按键值 在上一节中如果没有按键到
  • Java进阶day03继承

    先贴代码后分析 xff1a class Person span class hljs keyword private span span class hljs keyword int span age span class hljs key
  • JAVA进阶day05包和权限

    我这种外行人也听说过jar包 xff0c jar到底是个啥 xff1f 为啥c语言里没有呢 xff1f 下面我们拨开这一层面纱 贴代码做分析 xff1a 一 jar包 import a span class hljs preprocesso
  • Nandflash希尔特编程器烧录带来的一些点知识信息

    1 xff0e NAND FLASH 的特殊性 1 存在坏块 NAND FLASH 由于其生产工艺的原因 xff0c 出厂芯片中会随机包含坏块 坏块在出厂时已经被初始化 xff0c 并在特定区域中存在标记 xff0c 如果在使用过程中出现坏
  • 浅谈关于SRAM与DRAM的区别

    从名字上看 xff0c SRAM与DRAM的区别只在于一个是静态一个是动态 由于SRAM不需要刷新电路就能够保存数据 xff0c 所以具有静止存取数据的作用 而DRAM则需要不停地刷新电路 xff0c 否则内部的数据将会消失 而且不停刷新电
  • 在中断程序里修改全局变量的童鞋注意啦~(C中的volatile作用 转载~)

    一个定义为volatile的变量是说这变量可能会被意想不到地改变 xff0c 这样 xff0c 编译器就不会去假设这个变量的值了 精确地说就是 xff0c 优化器在用到这个变量时必须每次都小心地重新读取这个变量的值 xff0c 而不是使用保
  • arm MMU详解

    一 MMU的产生 许多年以前 xff0c 当人们还在使用DOS或是更古老的操作系统的时候 xff0c 计算机的内存还非常小 xff0c 一般都是以K为单位进行计算 xff0c 相应的 xff0c 当时的程序规模也不大 xff0c 所以内存容