实验一:基于Ubuntu系统实现无人机自主飞行

2023-05-16

 ps:为避免出现错误,在进行新的一步时,需要关闭由于上一步操作打开的终端,并开启一个新的终端。例如:在开始第5步(安装MAVROS)之前,关闭由于第3步(安装ROS)打开的终端,并开启一个新的终端!!!

图1 实验流程图

1. 在Windows10系统下安装Ubuntu 18.04双系统

Windows10安装ubuntu18.04双系统教程 - 不妨不妨,来日方长 - 博客园https://www.cnblogs.com/masbay/p/11627727.html

若原系统不是win10,请自行网上查询安装双系统方法,切记要安装ubuntu18.04。

2. 学习关于Ubuntu系统终端命令行的操作

需通过B站、CSDN等方式自行进行Ubuntu系统的学习。

3. 安装ROS系统

ROS(Robot Operating System)是一个在机器人领域应用非常广泛的框架,它包含了很多有用的库以及工具,在Ubuntu 18.04下安装ROS Melodic版本。

3.1 打开终端,输入如下命令安装依赖项:

sudo apt install -y \
	ninja-build \
	exiftool \
	python-argparse \
	python-empy \
	python-toml \
	python-numpy \
	python-yaml \
	python-dev \
	python-pip \
	ninja-build \
	protobuf-compiler \
	libeigen3-dev \
	genromfs 
pip install \
	pandas \
	jinja2 \
	pyserial \
	cerberus \
	pyulog \
	numpy \
	toml \
	pyquaternion

 3.2 输入如下命令,实现ROS Melodic的安装:

sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.tuna.tsinghua.edu.cn/ros/ubuntu/ `lsb_release -cs` main" > /etc/apt/sources.list.d/ros-latest.list'
#此处使用国内的ROS镜像源(注释)
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo apt-get update
sudo apt-get install ros-melodic-desktop-full
sudo rosdep init
rosdep update
echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
source ~/.bashrc
sudo apt install python-rosinstall python-catkin-tools python-rosinstall-generator python-wstool build-essential

# install ros-gazebo plugins(注释)
sudo apt install ros-melodic-gazebo-*

 注意:

          (1) sudo rosdep init出现如下情况时(出现了网络问题):

           执行如下操作:

输入以下代码:
sudo gedit /etc/hosts;
将下面一行代码添加到打开的文本文档中:
151.101.84.133 raw.githubusercontent.com

            (2) rosdep update报错(网络问题)时,执行如下操作:

将群里发送的rosdep压缩包解压,并复制到home/.ros文件夹下,.ros文件夹是一个隐藏文件,通过ctrl+h调出。

3.3 完成上列步骤后,可以通过下面的命令来测试是否成功安装:

roscore

如果ROS安装成功,可以看到下列结果,然后按ctrl+c杀死该进程:

... logging to /home/.ros/log/6a1b2330-2eb3-11e9-a39c-9cb6d0e498fb/roslaunch-gishr-XPS-15-9560-4452.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://XPS-15:44361/
ros_comm version 1.12.14


SUMMARY
========

PARAMETERS
 * /rosdistro: melodic
 * /rosversion: 1.12.14

NODES

auto-starting new master
process[master]: started with pid [4463]
ROS_MASTER_URI=http://XPS-15:11311/

setting /run_id to 6a1b2330-2eb3-11e9-a39c-*********
process[rosout-1]: started with pid [4476]
started core service [/rosout

3.4 接下来,需要生成catkin工作空间,你所有的基于ROS的库都可以存放在此。

mkdir -p ~/catkin_ws/src

4. 进行ROS系统的相关学习

【古月居】古月·ROS入门21讲 | 一学就会的ROS机器人入门教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1zt411G7Vn?from=search&seid=9766210578549235735&spm_id_from=333.337.0.0

以上链接是ROS 21讲的内容,可以参考该视频进行ROS系统的相关学习。

5. 安装MAVROS

MAVROS是一层MAVLink与ROS通信的封装,旨在方便无人机与机载电脑通信。若安装,你可以选择通过apt安装,或者从源码编译。推荐方法1,请参考如下步骤:

# 你可以使用下列任何一种方法(注释)


# 方法 1(注释)
sudo apt-get install ros-melodic-mavros ros-melodic-mavros-extras

# 安装geographic lib :(注释)
wget https://raw.githubusercontent.com/mavlink/mavros/master/mavros/scripts/install_geographiclib_datasets.sh
sudo chmod a+x install_geographiclib_datasets.sh
sudo ./install_geographiclib_datasets.sh

# 方法1(注释)



# 方法 2(注释)
cd ~/catkin_ws
catkin init && wstool init src
rosinstall_generator --rosdistro melodic mavlink | tee /tmp/mavros.rosinstall
rosinstall_generator --upstream mavros | tee -a /tmp/mavros.rosinstall
wstool merge -t src /tmp/mavros.rosinstall
wstool update -t src -j4
rosdep install --from-paths src --ignore-src -y

# 安装geographic lib :(注释)
sudo ./src/mavros/mavros/scripts/install_geographiclib_datasets.sh
sudo apt install ros-melodic-catkin python-catkin-tools
catkin build
# 方法 2(注释)

6. 安装PX4 Firmware

6.1 本实验采用PX4 v1.8.0固件

cd ~/catkin_ws/src

# 请保证网络连接正常,此步骤耗时较长,必要时需要挂加速器,实验提供加速器pigcha,账号密码会在群里发布,但由于同时只能在线两个账户,同学们也可以采用自己熟悉的加速器,或合理选择使用加速器时间(注释)
git clone https://github.com/PX4/Firmware.git
cd Firmware
git checkout v1.8.0
make posix_sitl_default gazebo

若以上步骤通过,此时会弹出Gazebo模拟器窗口,你会看到一架无人机出现在环境中,现在将窗口关闭即可。

6.2 修改环境变量,这样每次打开新的终端都可以保持环境变量一致:

# Use your favorite editor, we will be using gedit(注释)
# NOTE: you will need to use ROOT to edit bashrc(注释)
sudo gedit ~/.bashrc

# 在bashrc中,拷贝以下内容到bashrc尾端(注释)
source ~/catkin_ws/src/Firmware/Tools/setup_gazebo.bash ~/catkin_ws/src/Firmware/ ~/catkin_ws/src/Firmware/build/posix_sitl_default
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:~/catkin_ws/src/Firmware
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:~/catkin_ws/src/Firmware/Tools/sitl_gazebo

6.3 打开一个新终端,输入:

roslaunch px4 mavros_posix_sitl.launch

一个如下图所示的窗口会弹出:

6.4  在一个新终端输入:

rostopic echo /mavros/state

你可以看到:

header: 
  seq: 1
  stamp: 
    secs: 730
    nsecs: 280000000
  frame_id: ''
connected: True
armed: False
guided: False
mode: "MANUAL"
system_status: 3
---

如果你看到上面的connected为True,那就代表你的Gazebo仿真环境配置成功,同时你的MAVROS通信也成功设置。

 如果出现上述错误信息,但不影响Gazebo正常运行,则可忽略该错误!!!

7. 控制无人机简易飞行

7.1 将仿真需要的文件获取到本地环境,文件包括无人机模型、世界模型以及其他一些你会用的内容。通过如下命令实现:

# 请保证网络连接正常,此步骤耗时较长,必要时需要挂加速器,实验提供加速器pigcha,账号密码会在群里发布,但由于同时只能在线两个账户,同学们也可以采用自己熟悉的加速器,或合理选择使用加速器时间(注释)
git clone https://github.com/generalized-intelligence/GAAS.git

7.2 将模型文件所在地址更新到环境变量中:

echo "export GAZEBO_MODEL_PATH=${GAZEBO_MODEL_PATH}:~/GAAS/deprecated/simulator/models" >> ~/.bashrc

7.3  将模型以及配置文件拷贝到对应文件夹中:

cp -r ~/GAAS/deprecated/simulator/models/* ~/catkin_ws/src/Firmware/Tools/sitl_gazebo/models/
cp -r ~/GAAS/deprecated/simulator/worlds/* ~/catkin_ws/src/Firmware/Tools/sitl_gazebo/worlds/
cp -r ~/GAAS/deprecated/simulator/posix-config/* ~/catkin_ws/src/Firmware/posix-configs/SITL/init/ekf2/

7.4 通过下列命令构建仿真环境,打开一个终端,输入:

roslaunch px4 mavros_posix_sitl.launch

7.5 检查MAVROS连接情况:

rostopic echo /mavros/state

 7.6 如果Gazebo仿真环境成功启动且MAVROS连接成功,在一个新的终端,改变路径到GAAS下的demo文件夹,执行python脚本:

cd ~/GAAS/deprecated/demo/tutorial_1/1_px4_mavros_offboard_controller
python px4_mavros_run.py

你可以看到一个无人机逐渐起飞到3米高并悬停在此。

7.7 在另外一个终端中输入:

cd ~/GAAS/deprecated/demo/tutorial_1/1_px4_mavros_offboard_controller
python commander.py

你可以看到一个无人机按照下面的顺序飞行:

向右飞一米;

逆时针旋转90度;

降落。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

实验一:基于Ubuntu系统实现无人机自主飞行 的相关文章

  • quick sort(c++)以及k选取

    include lt iostream gt include lt vector gt using rank 61 int using namespace std int dash 61 0 int swap vector lt int g
  • STLINK CONNECTION ERROR 问题的解决

    打开STLINK UTILITY 连接芯片也连接不上 在settings里面 选择这个连接模式 xff0c 按下芯片复位键的同时 xff0c 点击连接 st link的灯闪烁红蓝相间的光表示连接成功 松开芯片reset xff0c 既连接成
  • 解决ros2安装出现的问题

    Cannot locate rosdep definition for python3 pytest 解决方法是输入弹幕命令 然后输入安装功能依赖的命令 如果有占用进程问题 xff0c 就重启 http t csdn cn WwqJa
  • conda activate 出错

    问题及解决办法 1 使用conda activate出错 在cmd中使用 conda bat activate 进入环境后在进行操作 2 conda install出错 xff0c 使用pip install 3 在cmd 中使用tenso
  • 树莓派4b 安装ubuntu20.04server和图形化界面遇到的问题

    树莓派安装图形界面参考教程 树莓派4b安装Ubuntu 18 04系统及图形桌面 树莓派4B安装 ubuntu20 04 amp VNC远程桌面 amp 安装ROS noetic 树莓派4b安装Ubuntu和ROS的完整爬坑记录 2021年
  • 【STM32】串口接收任意字符串

    目录 前言cube配置usart h xff1a usart cmain xff1a 效果 前言 之前写了一篇STM32hal库串口中断接收任意字符 实际上是不完美的 xff0c 他接收到换行符就完蛋了 花了点时间深入研究了一下hal库的串
  • 使用封装的axios发送请求

    使用封装的axios发送请求 1 src api api js 定义请求路由方法 span class token function import span URLS from span class token string 39 conf
  • STM32串口驱动

    首先了解串口通信的一些基本原理 xff1a 串口通信 xff1a 串口通信是指数据通过一条数据线 xff08 或者两条差分线 xff09 一位接着一位的传输出去 串口通信的优点是占用硬件资源少 xff0c 且传输距离较远 xff0c 缺点是
  • IIC 驱动OLED

    IIC总线可以驱动很多器件 xff0c 比较常见的有OLED EEPROM存储器 xff08 AT24C02 xff09 温度传感器 xff08 LM75A xff09 温湿度传感器 xff08 DHT11 xff09 等 有关IIC总线协
  • Stm32-使用TB6612驱动电机及编码器测速

    这里写目录标题 起因一 电机及编码器的参数二 硬件三 接线四 驱动电机1 TB6612电机驱动2 定时器的PWM模式驱动电机 五 编码器测速1 定时器的编码器接口模式2 定时器编码器模式测速的原理3 编码器模式的配置4 编码器模式相关代码5
  • CAN总线协议入门基础原理

    CAN 是 Controller Area Network 的缩写 xff08 以下称为 CAN xff09 xff0c 是 ISO 1 国际标准化的串行通信协议 CAN 通过 ISO11898 及 ISO11519 进行了标准化 xff0
  • SPI总线协议基本原理及相关配置

    单片机应用中 xff0c 最常用的通信协议主要有三个 xff0c 即USART IIC和SPI 关于前两个的介绍在之前文章学习过 xff0c 这次介绍一下第三个通信协议 SPI SPI Serial Peripheral Interface
  • 利用定时器的输出比较功能产生PWM驱动舵机

    一 定时器基本原理 首先我们来看一下ST官方给出的关于定时器的相关介绍 xff1a xff08 以STM32F103C8T6为例 xff09 STM32F103C8T6 含有 4 个 16 位定时器 xff0c 分别是一个高级定时器 TIM
  • ST-LINK固件升级

    关于st link固件升级注意的问题 在下载调试的过程中 xff0c 程序可能由于st link版本过旧而提示 command not supported 的错误 xff0c 这就要求我们升级st link固件才可以正常下载 但是在升级的过
  • 关于英伟达jetson nano的搭配双目摄像头跑ORB_SLAM2

    1 安装系统 按照商家给的资料安装 xff0c 将Ubuntu18 04LTS镜像拷贝到tf卡中 xff0c 插上jetson nano就可以安装了 2 系统设置 进入系统我先把系统语言设置为中文 xff0c 在右上角的设置中找到系统设置中
  • 双目摄像头(CSI-IMX219)的标定

    1 介绍 网上关于这类标定有挺多教程的 xff0c 但由于这个摄像头的特殊性 xff0c 所以不可能完全安装教程来走 目前来说有3种标定方法 xff1a ROS操作系统来标定 matlab标定 opencv标定 这三种方法我先试了用ROS来
  • 小学生学AD16(入门级别,看这篇就够了)

    1 软件安装 xff1a AD16的安装我就不多介绍了 xff0c csdn一搜一大把 要学一个软件 xff0c 那么软件安装是必经之路 xff0c 不要认为软件安装不重要 xff08 如果你的安装完之后桌面没快捷方式 xff0c 那么可以
  • Arduino串口绘图器双通道绘制

    Serial print val Serial print 34 34 Serial println muBiao 其实只用在两个变量之间加个 xff0c 就行了 参考网址 https www norwegiancreations com
  • 关于神舟笔记本TX8连副屏经常蓝屏的问题

    大概率是3060显卡驱动的问题 xff0c 可以试试重新安装显卡驱动 若还是不行就换个接口 xff0c 不要用hdim的接口 xff0c 那个是直接连3060的 换剩下两个的minidp接口其中一个 xff0c 第一个不要接 xff0c 那
  • 51单片机入门(小学生都能学会)

    序 xff1a 时隔一年 xff0c 我终于从二年级到三年级了 xff01 由于小学三年级这学期要学单片机 xff0c 故写下这篇笔记留下些什么 由于自己也是新手 xff0c 欢迎各位指出本文的各种错误 1 什么是51单片机 为什么要说这个

随机推荐

  • 解决使用WinScp连接Ubantu系统失败的问题---SSH无法连接

    起因 为了互通Linux系统和Windows系统的文件 xff0c 以更好的实现文件管理和资源共享 所以在查阅资料后 xff0c 使用WinScp xff0c WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端 它的
  • 小学生51系列之基础知识

    1 单片机的基本结构 说到基本结构 xff0c 就是指51单片机的硬件组成 51单片机由中央处理器CPU 储存器 定时器 I O端口 组成 其中储存器包含数据储存器 xff08 RAM xff09 和程序储存器 xff08 ROM xff0
  • ros 接入Livox Mid-70

    最近在研究3d避障激光 大疆Livox mid 70 xff0c 记录下接入过程 环境信息 xff1a Ubuntu 18 04 ros melodic 1 livox view 点云可视化 xff08 1 xff09 根据livox mi
  • ROS+opencv实践-二维码识别

    一 安装二维码识别的功能包 sudo apt span class token operator span get install ros span class token operator span melodic span class
  • C语言简单链表详细步骤详解

    43 链表 gt 小阿豪带你写链表 xff01 xff01 xff01 xff01 进入正文 span class token number 1 span 首先 xff0c 先想好自己要创建的链表格式以及最后的的显示界面 xff01 xff
  • 滚球控制系统详解 —— (附核心代码)

    最近练习了17年的国赛题 滚球控制系统 这里展示一下画圆 xff1a 观看完整视频点这里 接下来 xff0c 我来分享一下从搭整体结构到调试完的过程 这是我搭完的整体结构 xff08 缩小版 xff09 不管什么题 xff0c 结构部分还是
  • 【Linux网络编程】你了解TIME_WAIT状态吗?

    在Linux网络编程中 xff0c 我相信大多数人觉得最难理解的就是TCP中的TIME WAIT状态了吧 xff0c 那么TIME WAIT的概念到底是什么 xff0c 有几个类型呢 xff0c 以及在面试中经常会问到的TIME WAIT状
  • 【图解】八幅图带你轻松掌握八大排序(上):冒泡排序、选择排序、插入排序、快速排序

    在算法中 xff0c 八大排序算是最简单的也是重中之重 xff0c 所以掌握好八大排序的思想是非常重要的 xff0c 很多人学排序的时候会觉得似懂非懂 xff0c 本篇文章作者耗时两小时绘制了八大排序的详细图解 xff0c 让大家快速理解八
  • 最详细整理STL之vector基础

    前言 xff1a Vector是一种可以存储任意类型的动态数组 xff0c 属于序列式容器 xff0c 可以用sort对其进行排序 xff0c 底层数据结构是数组 xff0c 可以随机访问元素 Vectors 包含着一系列连续存储的元素 其
  • STL之vector扩容机制

    前言 大家好 xff0c 我是萝卜 上期结尾说到vector的push back操作一般情况下时间复杂度为O 1 xff0c 是否存在特殊情况 那么本期就讲讲vector在容器空间不足时进行push back操作会发生什么 vector作为
  • 求职嵌入式软件开发linux kernel/BSP leader/工程师职位

    个人工作说明 xff1a 目前从事linux系统网络设备的开发工作 xff0c 负责bootloader linux kernel文件系统 xff0c driver移植 xff0c 以及开源app移植 主要技能和过去的经验 xff1a 1
  • 【2023最新】计算机网络面试题【收藏持续更新】

    你好 xff0c 我是萝卜 xff0c 我会在本篇文章持续更新关于计算机网络的面试题 最新内容更新日期 xff1a 2023 04 11 基础 说一下计算机网络体系结构 网络体系结构一般有三种 xff1a ISO七层模型 xff0c TCP
  • UDP协议详解

    概述 xff1a UDP只在IP的数据报服务之上增加了两个最基本的服务 xff1a 复用和分用以及差错检测 UDP不保证可靠交付 xff0c 但是不意味着应用对数据的要求是不可靠的 xff0c 只是所有维护可靠性的工作可由用户在应用层完成
  • TCP传输可靠性保证机制之重传机制

    TCP重传机制 tcp重传机制包括超时重传 快速重传 带选择确认的重传 SACK 重复SACK 四种 超时重传 xff1a 超时重传是tcp协议保证数据可靠性的一个重要机制 原理是在发送某一个数据以后开启一个计时器 xff0c 在一定时间内
  • VSCode:终端控制台常用指令

    常用的指令 以下是一些在 Visual Studio Code 终端控制台中常用的指令 xff1a 1 清除终端 xff1a clear 2 列出当前目录中的文件和文件夹 xff1a ls 3 切换到指定目录 xff1a xff1a cd
  • Ubuntu18.04安装ROS时rosdep update报错解决办法

    在安装ros进行rosdep update时经常会报错 xff0c 有时候可以通过换网解决 xff0c 但从我安装那么多次的经验来看 xff0c 仅有一次换手机热点后更新成功了 xff0c 其他都是失败 xff0c 成功率太低 从网上搜到了
  • 【STM32】STM32F103C8T6串口通信,实现3个串口收发数据

    串口通信 xff08 Serial Communications xff09 实现单片机与电脑或者其它外设进行通信 xff0c 通信时只需两根线 xff08 TX xff0c RX xff09 就可以实现数据传输 STM32f103有三个串
  • C语言学习笔记——(2)数组

    数组 1 什么是是数组2 数组的定义2 1数组的表达2 2数组的含义2 3数组的大小 xff1a 3 字符数组4 字符串操作5 二维数组 1 什么是是数组 数组是指有序的元素序列 如果将有限个类型相同的变量的集合命名 xff0c 那么这个名
  • 多线程编程实验

    xff08 一 xff09 查看下列程序并运行 xff0c 掌握如何通过扩展Thread类创建线程 span class token keyword package span span class token namespace case1
  • 实验一:基于Ubuntu系统实现无人机自主飞行

    ps xff1a 为避免出现错误 xff0c 在进行新的一步时 xff0c 需要关闭由于上一步操作打开的终端 xff0c 并开启一个新的终端 例如 xff1a 在开始第5步 安装MAVROS 之前 xff0c 关闭由于第3步 安装ROS 打