Linux 基础概念

2023-05-16

文章目录

  • POSIX
    • 动态库和静态库
    • ioctl
  • MCU
    • 架构
      • RISC与CISC
      • x86、ARM、MIPS架构
  • U-boot
      • Bootloader 两种模式
      • 主机和板子的传输方式
      • 启动顺序
      • bootloader两个阶段
      • U-Boot 移植
  • 分区
      • Linux swap分区及作用详解
  • 语法
      • 缺页异常
      • 段错误
      • 定位
  • 文件
    • 权限
    • 压缩

POSIX

可移植操作系统接口(英语:Portable Operating System Interface,缩写为POSIX)是IEEE为要在各种UNIX操作系统上运行软件,而定义API的一系列互相关联的标准的总称,其正式称呼为IEEE Std 1003,而国际标准名称为ISO/IEC 9945。此标准源于一个大约开始于1985年的项目。POSIX这个名称是由理查德·斯托曼(RMS)应IEEE的要求而提议的一个易于记忆的名称。它基本上是Portable Operating System Interface(可移植操作系统接口)的缩写,而X则表明其对Unix API的传承

动态库和静态库

在Windows下静态库的后缀为:.lib、动态库后缀为:.dll;而在Linux下静态库的后缀为:.a、动态库的后缀为:.so。

那么什么是静态库呢?

首先我们来看看程序编译的大体流程:预处理——编译——汇编——链接

在我们的项目开发中,有些代码会被反复使用,那么这时我们便可将这些代码编译成库的形式来调用,像静态库就是在可执行文件中包含库代码的一份完整拷贝,但这种方式有个很严重的缺点就是会造成多份冗余拷贝。静态库会在程序的链接阶段被复制到程序中,所以程序在运行后是不会调用静态库的。

那动态库又是什么呢?

动态库不像静态库那样,在链接阶段并没有被复制到程序中,反而是程序运行的时候由系统动态的加载到内存中供程序调用,所以这里解决了静态库早晨多份冗余拷贝的缺点,系统只需要载入一次动态库,不同的程序可以得到内存中相同的动态库副本,因此可以节省大量的内存
————————————————
版权声明:本文为CSDN博主「Mr.Zhang」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_34199383/java/article/details/80308782

ioctl

ioctl是设备驱动程序中对设备的I/O通道进行管理的函数。所谓对I/O通道进行管理,就是对设备的一些特性进行控制,例如串口的传输波特率、马达的转速等等。它的调用个数如下:

int ioctl(int fd, ind cmd, …);

其中fd是用户程序打开设备时使用open函数返回的文件标示符,cmd是用户程序对设备的控制命令,至于后面的省略号,那是一些补充参数,一般最多一个,这个参数的有无和cmd的意义相关。

例如:看门狗操作

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iFNso4Dl-1627429085143)(evernotecid://839B6D53-8AF0-4841-860D-8C26913944D1/appyinxiangcom/28638961/ENResource/p81)]

MCU

架构

RISC与CISC

  • CISC(Complex Instruction SetComputer,复杂指令集计算机)

    复杂指令集(CISC,Complex Instruction Set Computer)是一种微处理器指令集架构(ISA),每个指令可执行若干低阶操作,诸如从内存读取、储存、和计算操作,全部集于单一指令之中。
    CISC特点:
    1.指令系统庞大,指令功能复杂,指令格式、寻址方式多;
    2.绝大多数指令需多个机器周期完成;
    3.各种指令都可访问存储器;
    4.采用微程序控制;
    5.有专用寄存器,少量;
    6.难以用优化编译技术生成高效的目标代码程序;
    在CISC指令集的各种指令中,大约有20%的指令会被反复使用,占整个程序代码的80%。而余下的80%的指令却不经常使用,在程序设计中只占20%

  • RISC(reduced instruction setcomputer,精简指令集计算机)
    精简指令集这种设计思路对指令数目和寻址方式都做了精简,使其实现更容易,指令并行执行程度更好,编译器的效率更高。它能够以更快的速度执行操作。
    RISC特点:
    1.统一指令编码(例如,所有指令中的op-code永远位于同样的位元位置、等长指令),可快速解译;
    2.泛用的暂存器,所有暂存器可用于所有内容,以及编译器设计的单纯化(不过暂存器中区分了整数和浮点数);
    3.单纯的寻址模式(复杂寻址模式以简单计算指令序列取代);
    4.硬件中支援少数资料型别(例如,一些CISC电脑中存有处理字节字串的指令。这在RISC电脑中不太可能出现)。

x86、ARM、MIPS架构

  • X86
    PC主架构,64位为x86-64或x64
  • ARM
    手机主架构
  • MIPS
    英语:MIPSarchitecture,为无内部互锁流水级的微处理器

U-boot

Bootloader 两种模式

  • Boot loading 模式
    用于产品发布,无用户介入,将操作系统从 flash 加载到 RAM
  • Downloading 模式
    把代码下到 flash 中

主机和板子的传输方式

  • 有线:串口协议
  • 无线:tftp、nfs
  • USB

启动顺序

  1. 固件的Boot(可能)和bootloader
  2. 内核
  3. 文件系统
  4. 用户程序

bootloader两个阶段

  • 第一阶段:汇编
    • 硬件初始化:关闭看门狗、关中断、设置cpu速度、时钟频率、RAM初始化等等
    • 为第二阶段代码准备RAM
    • 复制第二段代码
    • 设置栈
    • 跳转
  • 第二阶段:C
    • 初始化内存设备
    • 检测 menory map
    • 复制内核和根文件系统到RAM
    • 为内核设置启动参数:将参数放到指定位置,等待内核启动后去指定位置调用
    • 调用内核

U-Boot 移植

  • 修改 SDRAM 配置
  • 增加 SOC 支持
  • 选择 NOR Flash 型号
  • 支持串口协议
  • 支持网卡芯片
  • 支持 NAND Flash
  • 支持烧写 yaffs 文件系统映像
  • 修改默认配置参数

分区

Linux swap分区及作用详解

我们在安装系统的时候已经建立了 swap 分区。swap 分区通常被称为交换分区,这是一块特殊的硬盘空间,即当实际内存不够用的时候,操作系统会从内存中取出一部分暂时不用的数据,放在交换分区中,从而为当前运行的程序腾出足够的内存空间。

也就是说,当内存不够用时,我们使用 swap 分区来临时顶替。这种“拆东墙,补西墙”的方式应用于几乎所有的操作系统中。

使用 swap 交换分区,显著的优点是,通过操作系统的调度,应用程序实际可以使用的内存空间将远远超过系统的物理内存。由于硬盘空间的价格远比 RAM 要低,因此这种方式无疑是经济实惠的。当然,频繁地读写硬盘,会显著降低操作系统的运行速率,这也是使用 swap 交换分区最大的限制。

语法

缺页异常

给定一个线性地址,MMU 通过页目录表、页表的转换,找到对应的物理地址。在这个过程中,如果因某种原因导致无法访问到最终的物理内存单元,CPU 会产生一次缺页异常,从而进入缺页异常处理程序。

总结一下,缺页异常的原因有以下几种:

1、导致缺页异常的线性地址根本不在进程的“虚存区间”中,段错误。(栈扩展是一种例外情况)

2、地址在“虚存区间”中,但“虚存区间”的访问权限不够;例如“区间”是只读的,而你想写,段错误

3、权限也够了,但是映射关系没建立;先建立映射关系再说

4、映射关系也建立了,但是页面不在内存中。肯定是换出到交换分区中了,换进来再说

5、页面也在内存中。但页面的访问权限不够。例如页面是只读的,而你想写。这通常就是 “写时拷贝COW” 的情况。

6、缺页异常发生在“内核动态映射空间”。这是由于进程进入内核后,访问一个通过 vmalloc() 获得线性地址而引起的异常。对这种情况,需要将内核页目录表、页表中对应的映射关系拷贝到进程的页目录表和页表中。

段错误

段错误表示,该程序(方法、函数)访问的内存超出了系统给这个程序所设定的内存空间。
原因:

  • 访问不存在的内存地址
  • 访问系统保护的内存地址
  • 访问只读的内存地址
  • 栈溢出

定位

epc :exception program counter 异常程序计数器
ra : return address 返回地址

文件

权限

文件和文件夹操作权限

压缩

SquashFS是一套基于Linux内核使用的压缩只读文件系统。该文件系统能够压缩系统内的文档,inode以及目录,文件最大支持2^64字节。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Linux 基础概念 的相关文章

  • ros中Odom话题与odom坐标系的理解

    odom话题发表的是odom坐标系到base link之间的转换关系 xff0c 以及机器人的速度 其中base like是机器人本体坐标系 xff0c 与机器人中心重合 xff0c 所以odom坐标系到base link之间的转换关系也就
  • 多机器人导航与编队(一)

    多个机器人中让领导者导航 xff0c 相比于单个机器人导航需要修改的参数如下 主要是多机器人中的领导者与单个机器人发布的话题名称不一样 小车启动文件设置与简化 1设置 在小车的xacro文件的diff插件中添加 span class tok
  • 多机器人导航与编队(二)

    小车导航文件设置 导航分为两部分 xff1a 定位amcl和规划move base xff08 我自己的项目 导航对应ares1 maze2 amcl launch里面包含ares1 amcl launch xml 对应定位amcl xff
  • 多个小车相同功能的节点编写以及launch文件相关设置

    对于n个小车的相同功能 xff0c 写cpp 1写n个cpp 2写1个cpp xff0c 将n个小车的内容集中到一起 3写1个cpp xff0c 长度与单个相同 在launch文件中启动n个这样相同的节点 传入n个不同的参数 关于launc
  • ROS 多机器人导航salm中的问题

    ros中slam理解 在ROS中 xff0c 进行导航需要使用到的三个包是 xff1a xff08 1 xff09 move base xff1a 根据参照的消息进行路径规划 xff0c 使移动机器人到达指定的位置 这个路径规划包括全局路径
  • 一文读懂串口(波形分析、起始位、数据位、停止位、空闲位)

    串口 一 串口 xff08 串行接口 xff09 二 异步串口 xff08 以下统称串口 xff09 三 重要参数1 波特率2 报文格式2 1 起始位2 2 数据位2 3 奇偶校验位2 4 停止位2 5 空闲位 四 波形1 具体连接2 波形
  • #学习笔记 keil环境下单片机模块化编程的方法

    1 选择 add new item to group 建立一个 c文件 xff0c 一个 h文件 xff0c 并且名字一致 2 h文件的写法 xff08 1 xff09 h文件中要有首位两段语言 例如 ifndef HEARTRATE H
  • 【Drone】航模遥控系统各协议简介

    最近学习了无人机的一些知识 xff0c 在关于遥控系统这部分的各种协议看的有些头大 xff0c 人都晕了 看了一些资料后终于大概理解了这套系统中那些一团乱麻般的各协议的意义 xff0c 大致总结一下 图一 遥控系统组成 这里参考FPV帮装机
  • C语言获取当前的工作路径

    在C语言中获取当前的工作路径的方法一般是用内置函数为 xff1a DWORD GetModuleFileName HMODULE hModule LPTSTR lpFilename DWORD nSize 函数的参数说明 xff1a hMo
  • C/C++的指针传递和引用传递

    相信你遇到过指针传参 值传参 引用传参 xff0c 这三个关系足够让你头脑爆炸 xff0c 搞不清楚三者的区别 但是恭喜你 xff0c 你看到了这篇文章 xff0c 小编保证你看后茅塞顿开 xff0c 一下子就顺畅了 首先 xff0c 我们
  • #define、typedef 和 using之间的联系和区别

    目录 一 define 1 含义 2 用处 1 条件编译 2 解宏 3 文件包含 二 typedef 1 含义 2 用处 1 数据类型别名 2 指针别名 3 结构体别名 4 与平台无关的数据类型 三 using 1 含义 2 用处 1 权限
  • C++四种cast的详细介绍

    目录 一 static cast 1 基本数据类型转换 2 指针和void指针的转换 3 父类和子类之间的转换 二 dynamic cast 三 const cast 1 加上const 2 去掉const xff08 1 xff09 co
  • C++内存模型简述

    目录 一 什么是内存模型 二 内存的分类 三 各分区例程 1 全局 静态存储区 2 常量区 3 栈 xff08 Stack xff09 区域 4 堆 xff08 Heap xff09 区域 四 堆和栈的区别 五 堆和自由存储区的区别 1 m
  • Eclipse的介绍和插件使用

    目录 一 Eclipse的介绍 二 快捷方式 三 常用快捷键 四 插件开发 五 插件安装 第一种 xff1a 直接复制法 第二种 xff1a 使用link文件法 第三种 xff1a 使用eclipse自带图形界面安装 第四种 xff1a 使
  • 动态时间规整算法——DTW

    没有做过机器学习的小伙伴们对这个算法应该不是特别的了解 xff0c 因为机器学习经常会用到这个算法 再将这个算法之前 xff0c 我们先看一下初中的知识点 欧几里得距离 在讲解动态时间规整算法 xff08 Dynamic Time Warp
  • C++ 中的基本输入/输出

    C 43 43 附带的库为我们提供了许多执行输入和输出的方法 在 C 43 43 中 xff0c 输入和输出以字节序列或更通常称为流的形式执行 输入流 xff1a 如果字节流的方向是从设备 xff08 例如 xff0c 键盘 xff09 到
  • 单例设计模式

    单例设计模式是一种经典的面向对象设计模式 xff0c 它允许在一个应用程序中只创建一个实例对象 xff0c 以便在整个应用程序中共享该对象的状态和行为 单例模式通常用于管理应用程序级别的资源 xff0c 例如数据库连接 线程池 配置对象等
  • 代理设计模式

    一 概述 代理设计模式是一种结构型设计模式 xff0c 它允许在一个对象和其它对象之间添加一个代理对象 xff0c 以控制对原始对象的访问 代理对象通常在访问原始对象之前或之后执行一些额外的操作 xff0c 例如记录日志 控制访问权限 缓存
  • C++线程入门:轻松并发编程

    在现代计算机应用程序中 xff0c 我们经常需要处理并发任务 xff0c 这就需要使用多线程来实现 C 43 43 是一种功能强大的编程语言 xff0c 提供了丰富的线程支持 xff0c 使得并发编程变得相对容易 C 43 43 线程是一种
  • 中断与DMA

    中断 Cortex M3256 个优先级和 128 个抢占级悬起pending 中断中断的类型中断结构 DMA通道映射源传输和目标传输寄存器中断状态寄存器和中断标志清除寄存器通道x配置DMA stream x configuration r

随机推荐

  • keil编译时候出现function “ ” declared implicitly的解决方法

    在警告信息function declared implicitly双引号中的 表示的是所调用函数 xff0c 在调用该函数的前加 extern 声明即可
  • 2022年高教社杯全国大学生数学建模国赛B题思路详解

    1 比赛报名与思路解析 xff08 持续更新750967193 xff09 2 比赛时间 xff1a 2022年9月15日18点到2022年9月18日20点 如下为B题思路 xff1a 先贴题目 xff1a 如下是初步分析 xff1a 无人
  • 旋转矩阵、欧拉角之间转换

    学习过程中涉及欧拉角和旋转矩阵的转换 xff0c 索性整理学习一下欧拉角四元数和旋转矩阵的概念以及matlab中的互相转换 本文摘自各大课本 xff0c 博客 xff0c 自己学习整理使用 xff0c 侵删 MATLAB矩阵乘法从左到右依次
  • ROS中C++ boost编程,类内回调函数

    首先熟悉boost bind 定义如下函数 xff1a span class token keyword int span span class token function f span span class token punctuat
  • 理解头文件(.h)、库文件(.lib)、和动态链接库文件(.dll),Fortran中的预处理及Fortran中function的简单使用

    文章目录 问题来源我的问题头文件 库文件和动态链接库头文件 h库文件 lib动态链接库 dll三者的关系静态链接动态链接 初识 Fortran 预处理包含文件 include Fortran中function简单使用声明interface调
  • OpenCV计算机视觉库,Tensorflow深度学习框架

    OpenCV是计算机视觉库 xff0c 包含了大量的图像处理和计算机视觉的算法 xff0c 但是在机器学习方面明显不足 xff0c ML模块只有SVM xff0c MLP xff0c kNN等有限的几种算法 dnn模块也是调用别的框架 Te
  • 动态库和静态库

    概念 什么是库 库是写好的 xff0c 现有的 xff0c 成熟的 xff0c 可以复用的代码 现实中每个程序都要依赖很多基础的底层库 xff0c 不可能每个人的代码都从零开始 xff0c 因此库的存在意义非同寻常 本质上来说 xff0c
  • Linux 内核设计与实现 —— 1.内核简介

    文章目录 操作系统和内核简介内核包括 xff1a 内核与应用程序 xff1a 内核与硬件设备 xff1a 内核的运行模式 xff1a Linux内核与Unix内核比较单内核与微内核设计之比较Linux内核与Unix内核差异 操作系统和内核简
  • VIM基础操作

    方向键 xff1a hjkl输入 向后输入 xff1a a shift最前向前输入 xff1a i shift最后向下新生成一行输入 xff1a o shift上一行删掉当前字符并写入 xff1a s 撤销 xff1a u键盘重映设 vim
  • Git基础操作

    Git基础操作 仓库配置初始化仓库查看当前所在仓库修改远端仓库 代码提交基础操作tag操作删除最后N次提交储藏 代码管理分支操作patch操作查看指定文件的修改历史统计代码量 仓库配置 初始化仓库 1 xff0c 安装 sudo apt g
  • Google SRE 自我评分——《Google SRE: How Google runs production systems》

    Google SRE How Google runs production systems 0 xff1a you are unfamiliar with the subject area 0 xff1a 不熟悉的领域 也就是说对相关的领域
  • java基础之byte转换工具类

    1 Byte 转 byte public static byte toPrimitives Byte oBytes byte bytes 61 new byte oBytes length for int i 61 0 i lt oByte
  • VLAN技术

    大家好呀 xff0c 我是请假君 xff0c 今天又来和大家一起学习数通了 xff0c 今天要分享的知识是VLAN技术 介绍VLAN之前先来了解一下广播风暴 xff1a 在交换式以太网出现后 xff0c 同一个交换机下不同的端口处于不同的冲
  • shell基础操作

    shell基础操作 有待补充基础操作基础素养 使用需要转译的字符休眠账户密码权限管道清屏让命令在后台运行黑洞 硬件查看显示分辨率 软件删除软件和配置文件 文件操作复制 目录返回上一次目录 查找findgrep 文件夹大小对比文件类型删除文件
  • makefile基础

    makefile基础 编译和链接makefile基础格式clean的写法makefile构成使用其他的makefile引用其他的makefile引用方式makefile 查找方式 make 的工作方式添加define警告编译不过 编译和链接
  • DHCP协议

    DHCP协议 动态主机设置协议 xff0c 使用UDP协议工作用途 自动分配IP管理 服务器端使用67 udp xff0c 客户端使用68 udp基本过程 请求IP租约 xff08 discover xff09 客户端广播 xff0c 服务
  • Linux驱动程序概述

    怎么写驱动 看原理图写驱动写测试程序 流程 分配file operations结构体设置结构体成员 open 61 led open 配置为输出引脚 wirte 61 led write 设置引脚状态 注册 xff08 告诉内核 xff09
  • Linux boot API

    Linux boot API 代码主控头文件U BOOT CMD 终端命令sf nand xff08 nor nand flash xff09 具体用法使用范例 setenv 命令 代码 主控头文件 boot主逻辑在此 xff0c 以Ing
  • dash与bash

    dash与bash 背景dash与bash的区别shell配置错误的可能特征坑 xff01 xff01 xff01 查看shell真实配置切换 背景 平台Linux编译 xff0c 可能会遇到脚本设置类型不同 xff08 如 xff1a 芯
  • Linux 基础概念

    文章目录 POSIX动态库和静态库ioctl MCU架构RISC与CISCx86 ARM MIPS架构 U bootBootloader 两种模式主机和板子的传输方式启动顺序bootloader两个阶段U Boot 移植 分区Linux s