PWM波控制舵机总结

2023-05-16

文章转载自 https://www.cnblogs.com/zhoubatuo/p/6138033.html

一、关于舵机:

舵机(英文叫Servo):它由直流电机、减速齿轮组、传感器和控制电路组成的一套自动控制系统。通过发送信号,指定输出轴旋转角度。舵机一般而言都有最大旋转角度(比如180度。)与普通直流电机的区别主要在,直流电机是一圈圈转动的,舵机只能在一定角度内转动,不能一圈圈转(数字舵机可以在舵机模式和电机模式中切换,没有这个问题)。普通直流电机无法反馈转动的角度信息,而舵机可以。用途也不同,普通直流电机一般是整圈转动做动力用,舵机是控制某物体转动一定角度用(比如机器人的关节)。

舵机的形状和大小多的让人眼花缭乱,大致可以分为下面这几种(如图所示)

 
最右边的是常见的标准舵机,中间两个小的是微型舵机,左边魁梧的那个是大扭力舵机。图上这几种舵机都是三线控制。
制作机器人常用的舵机有下面几种,而且每种的固定方式也不同,如果从一个型号换成一个型号,整个机械结构都需要重新设计。
第一种是MG995,优点是价格便宜,金属齿轮,耐用度也不错。缺点是扭力比较小,所以负载不能太大,如果做双足机器人之类的这款舵机不是很合适,因为腿部受力太大。做做普通的六足,或者机械手还是不错的。

第二种是SR 403,这款舵机是网友xqi2因MG995做双足机器人抖动太厉害,摸索找到的,经过测试。制作双足机器人不错~~~至少不抖了。优点是扭力大,全金属齿轮,价格也还算便宜。缺点嘛。。。做工很山寨。。。其他缺点等待反馈

第三种就是传说中的数字舵机AX12+,这个是久经考验的机器人专用舵机。除了价格高,使用RS485串口通信(控制板就得换数字舵机专用控制板),其他都是优点。 
下图是一个普通模拟舵机的分解图,其组成部分主要有齿轮组、电机、电位器、电机控制板、壳体这几大部分。 
电机控制板主要是用来驱动电机和接受电位器反馈回来的信息。电机嘛,动力的来源了,这个不用太多解释。电位器这里的作用主要是通过其旋转后产生的电阻的变化,把信号发送回电机控制板,使其判断输出轴角度是否输出正确。齿轮组的作用主要是力量的放大,使小功率电机产生大扭矩。 
舵机底壳拆开后就可以看到,主要是电机与控制板 
控制板拿起来后下方是与控制板连接的电位器
从顶部来看电机与电位器,与电机齿轮直接相连的为第一级放大齿轮。 
经过一级齿轮放大后,再经过二、三、四级放大齿轮,最后再通过输出轴输出。 
通过上面两图可以很清晰的看到,本舵机是4级齿轮放大机构,就是通过这么一层层的把小的力量放大,使得这么一个小小的电机能有15KG的扭力。

二、舵机控制方法:

舵机的伺服系统由可变宽度的脉冲来进行控制,控制线是用来传送脉冲的。脉冲的参数有最小值,最大值,和频率。一般而言,舵机的基准信号都是周期为20ms,宽度为1.5ms。这个基准信号定义的位置为中间位置。舵机有最大转动角度,中间位置的定义就是从这个位置到最大角度与最小角度的量完全一样。最重要的一点是,不同舵机的最大转动角度可能不相同,但是其中间位置的脉冲宽度是一定的,那就是1.5ms。如下图:
角度是由来自控制线的持续的脉冲所产生。这种控制方法叫做脉冲调制。脉冲的长短决定舵机转动多大角度。例如:1.5毫秒脉冲会到转动到中间位置(对于180°舵机来说,就是90°位置)。当控制系统发出指令,让舵机移动到某一位置,并让他保持这个角度,这时外力的影响不会让他角度产生变化,但是这个是由上限的,上限就是他的最大扭力。除非控制系统不停的发出脉冲稳定舵机的角度,舵机的角度不会一直不变。
当舵机接收到一个小于1.5ms的脉冲,输出轴会以中间位置为标准,逆时针旋转一定角度。接收到的脉冲大于1.5ms情况相反。不同品牌,甚至同一品牌的不同舵机,都会有不同的最大值和最小值。一般而言,最小脉冲为1ms,最大脉冲为2ms。如下图: 

三、小总结:

  首先是舵机的引线,一般为三线控制(没有接触过不是三线的),红色为电源,棕色为地,黄色为信号。控制舵机的时候,需要不断的给PWM波才能使得舵机在某个角度有扭矩。

  关于舵机的控制程序,我的上一篇博文:SEM32之PWM波形输出配置总结有进行介绍。只需要改变PWM波的占空比就可以改变舵机的转动角度了。


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PWM波控制舵机总结 的相关文章

  • 【51】PWM控制使用

    PWM xff0c 英文名Pulse Width Modulation xff0c 是脉冲宽度调制缩写 xff0c 它是通过对一系列脉冲的宽度进行调制 xff0c 等效出所需要的波形 xff08 包含形状以及幅值 xff09 通过调节占空比
  • 10. STM32——PWM 控制舵机(超声波感应开盖垃圾桶)

    STM32 PWM 控制舵机 通用定时输出PWMPWM的工作原理PWM的模式TIM OCMode PWM1 xff08 边沿对齐模式 xff09 TIM OCMode PWM2 xff08 中央对齐模式 xff09 占空比 舵机实物图接线舵
  • STM32实现PWM输出与PWM输入捕获(HAL库)

    文章目录 一 前言二 STM32 定时器2 1 基本定时器2 1 1 功能与框图2 1 2 CubeMX配置 2 2 通用定时器2 2 1 功能与框图2 2 2 CubeMX配置 2 3 高级定时器2 3 1 功能与框图2 3 2 Cube
  • stm32F407中arr与psc以及pwm之间的关系

    stm32F407pwm控制 A Stm32F407主频 xff08 即CPU的时钟频率 xff09 xff1a 168MHZ B arr是计数 xff0c 从0到设定值 xff0c 然后返回至0重新开始计数 xff08 也可以看成pwm的
  • STM32通过PWM控制ESC30C电调

    最近在搞一个水下推进器 xff0c 这东西的控制其实跟四旋翼的螺旋桨控制差不多 但我也是第一次用STM32板子来控制电调驱动桨叶旋转 xff0c 因此踩了很多坑 网上找了很多资料 xff0c 但是很多都写的不是很清楚 xff0c 这边稍微记
  • 【STM32Cube HAL】输入捕获(六)——PWM测量

    对于PWM的捕获 xff0c 我这里一共使用两种方法实现 xff1a 第一种是PWM输入模式 xff0c 采用一个定时器的两个通道 xff08 通道一和通道二 xff09 xff0c 配置从模式为复位模式 xff0c 没有进行溢出处理 xf
  • STM32F103VCT6 高级定时器的PWM输出

    要求得到下列波形 xff0c 死区时间1us CH1和CH1之间的相位差事3us 频率50HZ 1 xff0c To get TIM1 counter clock at 72MHz the prescaler is computer as
  • PID控制输出PWM核心代码(基于STM32F103)

    注 xff1a 1 如果对于PID控制原理不是很了解 xff0c 可以找些资料看 xff0c 最好先搞懂原理 2 程序中Kp Ki Kd 199 0可根据实际情况自己修改 全局变量 float target 61 30 0 目标温度 flo
  • DSP的PWM

    PRD 周期寄存器 xff0c 决定了PWM的周期 频率 CMP 比较寄存器 xff0c 决定了PWM的占空比 CRT 计数寄存器 PWM原理图 为什么需要PWM
  • stm32通用定时器输出PWM控制舵机

    stm32的通用定时器有TIM2 TIM3 TIM4 TIM5 xff0c 每个定时器都有独立的四个通道可以作为 xff1a 输入捕获 输出比较 PWM输出 单脉冲模式输出等 stm32除了基本定时器 xff0c 其他定时器都能输出PWM
  • stm32高级定时器实现pwm互补输出

    简介 stm32设备一般都有很多类型的定时器 xff0c 常见的有systick timer 基本定时器 通用定时器 高级定时器 看门狗定时器 RTC等等 xff0c 本文简单介绍高级定时器是如何实现pwm互补输出 详细 我这里使用的dev
  • STM32F103C8T6 PWM驱动舵机(SG90)

    小知识 xff1a 同一个定时器 xff0c 不同通道输出不同输出PWM的特点 对于同一个定时器的不同通道输出PWM xff0c 因为它们是共用一个计数器的 xff0c 所以频率必须一样 xff0c 而占空比由各自的CCR决定 xff0c
  • 用PWM控制舵机(以是stm32为例)

    因为做校创需要用到舵机 xff0c 以前知道大致的理论 xff0c 因此看了一些帖子 xff0c 总结一下被以后查看 什么是PWM波 PWM就是脉冲宽度调制 xff0c 也就是占空比可变的脉冲波形 pwm的占空比 xff0c 就是指高电平保
  • Arduino接收航模遥控器RC接收机的PWM数据

    本文将介绍如何使用Arduino读取RC接收机的PWM数据 1 硬件部分 我的设备 xff1a 接收机 遥控器发射机 将Arduino Nano的引脚 D8 D11 接到接收机的1 4通道 xff0c 接收机上的电源正极和负极连接到Ardu
  • STM32F103控制PCA9685产生16路PWM波控制SG90舵机

    STM32控制PCA9685产生16路PWM波控制SG90舵机 如果你能点开这篇文章 xff0c 说明你已经知道PCA9685是多么强大 xff0c NXP公司原本做这片芯片是为了提供给LED使用 xff0c 在其官方文档里也能看到所有PW
  • 电机控制基础——定时器基础知识与PWM输出原理

    单片机开发中 电机的控制与定时器有着密不可分的关系 无论是直流电机 步进电机还是舵机 都会用到定时器 比如最常用的有刷直流电机 会使用定时器产生PWM波来调节转速 通过定时器的正交编码器接口来测量转速等 本篇先介绍定时器的基础知识 然后对照
  • X2000 Linux PWM

    一 硬件设计 PC04 PWM4 二 通过shell开启PWM 配置参数 cmd pwm config pc04 freq 1000 max level 100 active level 1 accuracy priority freq 启
  • PMIC驱动之—PMIC硬件相关知识

    PMIC 电源管理集成电路 Power Management IC 在之前项目中 驱动最小系统 对于PMIC这块儿很懵懂 故抽时间查看一些优秀博文及资料 加强对电源管理的理解 本文介绍 PMIC 硬件电路相关的一些知识 在此作一些阶段性的学
  • stm32定时器与定时器中断

    1 定时器种类 注 主要使用通用定时器 2 通用计时器特点描述 说明 四个通道互不影响 3 定时器中断触发条件 4 定时器计数模式 分为向上 向下 向上向下模式 5 通用定时器作用用途 测量输入输出波长度等 说明 每个定时器完全独立没有共享
  • 快速学习Stm32舵机控制板控制多个舵机运动以及调速

    本次分享stm32对多个舵机的控制 之前讲解过单个舵机的控制 以及控制原理 定时器的使用和pwm的输出来控制一个舵机的角度转向 这次就和大家分享一下多个舵机的控制以及调速 利用单片机实现对 8 个舵机的同时控制 掌握多个舵机控制程序实现方法

随机推荐

  • 查看当前系统的glibc版本

    from http my oschina net acmfly blog 77211 有时我们经常需要查看当前系统的glibc版本 xff0c 可以这样查看 xff1a lib libc so 6 有时 xff1a lib x86 64 l
  • 禁忌搜索算法简介

    忌搜索 xff08 Tabu Search或Taboo Search xff0c 简称TS xff09 的思想最早由Glover 1986 提出 xff0c 它是对局部领域搜索的一种扩展 xff0c 是一种全局逐步寻优算法 xff0c 是对
  • 自定义文件格式注册和图标设置

    我们很多时候可能会有这样的一种需求 xff0c 即要生成自己的文件格式 xff0c 然后将这种文件格式注册到操作系统中 xff0c 双击就会使用特定的程序来打开 xff0c 并且我们还想为这种文件格式设置一个图标和缩略 本文章解决的是注册文
  • apache源码分析v2.0

    一 概要 1 平台功能层 xff0c 可移植运行库层 xff0c 核心功能层 xff0c 可选功能层 xff0c 第三方支持库 2 核心功能层 xff1a mod core 处理配置文件中的大部分配置指令 mod so 动态加载其余模块 m
  • Intel英特尔历代经典 CPU 产品回顾

    悉数历史 英特尔历代经典 CPU 产品回顾 从英特尔于 1971 年推出首款 4004 微处理器到现在 xff0c 英特尔处理器已经走过 了 40 个年头 在告别 13 年传奇品牌奔腾之后 xff0c 我们又迎来新一代酷睿 i 双核处 理器
  • vTaskStartScheduler()分析笔记

    FreeRTOS是通过vTaskStartScheduler 函数来启动运行的 xff0c 通常被封装在osKernelStart 中 xff0c 它的工作内容如下 xff1a xTaskCreate 创建空闲任务 xff0c 其优先级为最
  • 在MES中遇到生产异常是怎么处理的

    MES系统在生产过程中 xff0c 难免会遇到各种异常情况 xff0c 如机器故障 材料不足 工人缺席等 xff0c 这些异常情况会影响生产进度和产品质量 那么 xff0c 在MES中遇到生产异常通常是怎么处理的呢 xff1f 1 实时监控
  • ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM

    摘要 ORB SLAM3是第一个能够让单目 立体相机和RGB D相机与针孔和鱼眼镜头模型解耦进行视觉 视觉 43 惯性和多地图SLAM的系统 第一个主要的创新是一个基于特征的紧密集成视觉 43 惯性SLAM系统 xff0c 它完全依赖于最大
  • SVN右键不显示

    安装重启试了很多中方法 xff0c SVN右键始终不显示 方法1 xff08 测试没有出现 xff09 xff08 一 xff09 开始 运行 输入 regedit 进入注册表 xff1b xff08 二 xff09 进入目录 xff1a
  • GPS定位频率最高是多少HZ?

    转载 xff1a https www zhihu com question 41257990 answer 90574977 现在普遍常见的芯片10Hz xff0c ublox好像可以配置到100Hz xff0c 具体是10还是100记不清
  • 总结下-ST2.0库的霍尔角度估计

    1 首先明确一个关系等式 xff0c 看软件就很容易理解 F1代表FOC执行频率 xff08 PWM周期频率 xff09 xff0c 单位是HZ xff1b A代表一个PWM周期内霍尔角度变化量 xff1b AC代表一个电角度周期的角度变化
  • matlab timeserise

    1 xff09 产生timeserise数据 方法一 xff1a 通过timeseries xff0c 例如ts 61 timeseries rand 5 1 rand是产生5 1的矩阵随机数 方法二 xff1a simulink中产生的数
  • 自适应滤波器

    1 LMS Filter模块仿真时 xff0c 输出会发散 xff0c 主要是mu值选取不合适 xff0c 选取比较小的值就可以了 2 可以把网上的m文件通过 matlab coder工具直接转为C文件 xff08 不能直接使用 xff0c
  • 步进电机生成S曲线上位机

    参考的 步进电机S SigMoid 曲线加减速 查表法 Renjiankun的博客 CSDN博客 步进电机s曲线 自己用C 花了大半天搞了一个 xff0c 直接copy生成的数组使用 xff1b 源码可下载步进电机生成S曲线上位机 嵌入式文
  • 电解电容的ESR,想说三句话

    电容的ESR是指电容的等效串联电阻 xff08 或阻抗 xff09 理想的电容 xff0c 是没有电阻的 但是实际上 xff0c 任何电容都有电阻 xff0c 这个电阻值和电容的材料 结构有关系 1 那些 贴片电容 选用贴片电容的时候 xf
  • Matlab2012b&Simulink licence失效解决办法(重复激活解决方案)

    光棍节结束 xff0c math公司也对用户端进行调整 xff0c 很多朋友的matlab都被要求重新添加许可文件 然而 xff0c 基本都是激活完成 xff0c 打开 xff0c 继续激活 xff0c 然后激活完成重复 这是因为激活的文件
  • 航模飞机飞行力效和飞行时间的算法

    力效 xff08 g w xff09 总起飞重量 xff08 g 除起飞功率 xff08 w xff09 例 xff1a 有一架飞机 xff0c 总起飞重量是 8KG xff0c 也就是 8000G xff0c 悬停电流是 40A xff0
  • 5脚继电器的接法

    5脚继电器原理图和接法 一般情况 xff0c 三只脚的那一边中间脚是输出触点的公共端子 xff0c 另外两个引脚是线圈 xff0c 即接驱动端 另外2个脚那边分别是常开和常闭触点 如下图 xff1a A B 脚接驱动电路端 要控制的电路接1
  • Python -- argparse :命令行参数解析模块

    Python argparse xff1a 命令行参数解析模块 官网参考文档 文章目录 Python argparse xff1a 命令行参数解析模块1 总述2 96 add argument 96 2 1 name or flags2 2
  • PWM波控制舵机总结

    文章转载自 https www cnblogs com zhoubatuo p 6138033 html 一 关于舵机 xff1a 舵机 xff08 英文叫Servo xff09 xff1a 它由直流电机 减速齿轮组 传感器和控制电路组成的