嵌入式系统 Boot Loader 技术内幕

2023-05-16

内容:
1. 引言
2. Boot Loader 的概念
3. Boot Loader 的主要任务与典型结构框架
4. 关于串口终端
5. 结束语
关于作者
对于本文的评价
在 Linux 专区还有:
教程
工具与产品
代码与组件
项目
文章
 
詹荣开 (zhanrk@sohu.com)
2003 年 12 月
 
本文详细地介绍了基于嵌入式系统中的 OS 启动加载程序 ―― Boot Loader 的概念、软件设计的主要任务以及结构框架等内容。
 
1. 引言
在专用的嵌入式板子运行 GNU/Linux 系统已经变得越来越流行。一个嵌入式 Linux 系统从软件的角度看通常可以分为四个层次:
 
1. 引导加载程序。包括固化在固件(firmware)中的 boot 代码(可选),和 Boot Loader 两大部分。
 
2. Linux 内核。特定于嵌入式板子的定制内核以及内核的启动参数。
 
3. 文件系统。包括根文件系统和建立于 Flash 内存设备之上文件系统。通常用 ram disk 来作为 root fs。
 
4. 用户应用程序。特定于用户的应用程序。有时在用户应用程序和内核层之间可能还会包括一个嵌入式图形用户界面。常用的嵌入式 GUI 有:MicroWindows 和 MiniGUI 懂。
 
引导加载程序是系统加电后运行的第一段软件代码。回忆一下 PC 的体系结构我们可以知道,PC 机中的引导加载程序由 BIOS(其本质就是一段固件程序)和位于硬盘 MBR 中的 OS Boot Loader(比如,LILO 和 GRUB 等)一起组成。BIOS 在完成硬件检测和资源分配后,将硬盘 MBR 中的 Boot Loader 读到系统的 RAM 中,然后将控制权交给 OS Boot Loader。Boot Loader 的主要运行任务就是将内核映象从硬盘上读到 RAM 中,然后跳转到内核的入口点去运行,也即开始启动操作系统。
 
而在嵌入式系统中,通常并没有像 BIOS 那样的固件程序(注,有的嵌入式 CPU 也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由 Boot Loader 来完成。比如在一个基于 ARM7TDMI core 的嵌入式系统中,系统在上电或复位时通常都从地址 0x00000000 处开始执行,而在这个地址处安排的通常就是系统的 Boot Loader 程序。
 
本文将从 Boot Loader 的概念、Boot Loader 的主要任务、Boot Loader 的框架结构以及 Boot Loader 的安装等四个方面来讨论嵌入式系统的 Boot Loader。
 
2. Boot Loader 的概念
简单地说,Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。
 
通常,Boot Loader 是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 Boot Loader 几乎是不可能的。尽管如此,我们仍然可以对 Boot Loader 归纳出一些通用的概念来,以指导用户特定的 Boot Loader 设计与实现。
 
1. Boot Loader 所支持的 CPU 和嵌入式板
 
每种不同的 CPU 体系结构都有不同的 Boot Loader。有些 Boot Loader 也支持多种体系结构的 CPU,比如 U-Boot 就同时支持 ARM 体系结构和MIPS 体系结构。除了依赖于 CPU 的体系结构外,Boot Loader 实际上也依赖于具体的嵌入式板级设备的配置。这也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种 CPU 而构建的,要想让运行在一块板子上的 Boot Loader 程序也能运行在另一块板子上,通常也都需要修改 Boot Loader 的源程序。
 
2. Boot Loader 的安装媒介(Installation Medium)
 
系统加电或复位后,所有的 CPU 通常都从某个由 CPU 制造商预先安排的地址上取指令。比如,基于 ARM7TDMI core 的 CPU 在复位时通常都从地址 0x00000000 取它的第一条指令。而基于 CPU 构建的嵌入式系统通常都有某种类型的固态存储设备(比如:ROM、EEPROM 或 FLASH 等)被映射到这个预先安排的地址上。因此在系统加电后,CPU 将首先执行 Boot Loader 程序。
 
下图1就是一个同时装有 Boot Loader、内核的启动参数、内核映像和根文件系统映像的固态存储设备的典型空间分配结构图。
 
图1 固态存储设备的典型空间分配结构
 
3. 用来控制 Boot Loader 的设备或机制
 
主机和目标机之间一般通过串口建立连接,Boot Loader 软件在执行时通常会通过串口来进行 I/O,比如:输出打印信息到串口,从串口读取用户控制字符等。
 
4. Boot Loader 的启动过程是单阶段(Single Stage)还是多阶段(Multi-Stage)
 
通常多阶段的 Boot Loader 能提供更为复杂的功能,以及更好的可移植性。从固态存储设备上启动的 Boot Loader 大多都是 2 阶段的启动过程,也即启动过程可以分为 stage 1 和 stage 2 两部分。而至于在 stage 1 和 stage 2 具体完成哪些任务将在下面讨论。
 
5. Boot Loader 的操作模式 (Operation Mode)
 
大多数 Boot Loader 都包含两种不同的操作模式:"启动加载"模式和"下载"模式,这种区别仅对于开发人员才有意义。但从最终用户的角度看,Boot Loader 的作用就是用来加载操作系统,而并不存在所谓的启动加载模式与下载工作模式的区别。
 
启动加载(Boot loading)模式:这种模式也称为"自主"(Autonomous)模式。也即 Boot Loader 从目标机上的某个固态存储设备上将操作系统加载到 RAM 中运行,整个过程并没有用户的介入。这种模式是 Boot Loader 的正常工作模式,因此在嵌入式产品发布的时侯,Boot Loader 显然必须工作在这种模式下。
 
下载(Downloading)模式:在这种模式下,目标机上的 Boot Loader 将通过串口连接或网络连接等通信手段从主机(Host)下载文件,比如:下载内核映像和根文件系统映像等。从主机下载的文件通常首先被 Boot Loader 保存到目标机的 RAM 中,然后再被 Boot Loader 写到目标机上的FLASH 类固态存储设备中。Boot Loader 的这种模式通常在第一次安装内核与根文件系统时被使用;此外,以后的系统更新也会使用 Boot Loader 的这种工作模式。工作于这种模式下的 Boot Loader 通常都会向它的终端用户提供一个简单的命令行接口。
 
像 Blob 或 U-Boot 等这样功能强大的 Boot Loader 通常同时支持这两种工作模式,而且允许用户在这两种工作模式之间进行切换。比如,Blob 在启动时处于正常的启动加载模式,但是它会延时 10 秒等待终端用户按下任意键而将 blob 切换到下载模式。如果在 10 秒内没有用户按键,则 blob 继续启动 Linux 内核。
 
6. BootLoader 与主机之间进行文件传输所用的通信设备及协议
 
最常见的情况就是,目标机上的 Boot Loader 通过串口与主机之间进行文件传输,传输协议通常是 xmodem/ymodem/zmodem 协议中的一种。但是,串口传输的速度是有限的,因此通过以太网连接并借助 TFTP 协议来下载文件是个更好的选择。
 
此外,在论及这个话题时,主机方所用的软件也要考虑。比如,在通过以太网连接和 TFTP 协议来下载文件时,主机方必须有一个软件用来的提供 TFTP 服务。
 
在讨论了 BootLoader 的上述概念后,下面我们来具体看看 BootLoader 的应该完成哪些任务。
 
3. Boot Loader 的主要任务与典型结构框架
在继续本节的讨论之前,首先我们做一个假定,那就是:假定内核映像与根文件系统映像都被加载到 RAM 中运行。之所以提出这样一个假设前提是因为,在嵌入式系统中内核映像与根文件系统映像也可以直接在 ROM 或 Flash 这样的固态存储设备中直接运行。但这种做法无疑是以运行速度的牺牲为代价的。
 
从操作系统的角度看,Boot Loader 的总目标就是正确地调用内核来执行。
 
另外,由于 Boot Loader 的实现依赖于 CPU 的体系结构,因此大多数 Boot Loader 都分为 stage1 和 stage2 两大部分。依赖于 CPU 体系结构的代码,比如设备初始化代码等,通常都放在 stage1 中,而且通常都用汇编语言来实现,以达到短小精悍的目的。而 stage2 则通常用C语言来实现,这样可以实现给复杂的功能,而且代码会具有更好的可读性和可移植性。
 
Boot Loader 的 stage1 通常包括以下步骤(以执行的先后顺序):
 
* 硬件设备初始化。
 
* 为加载 Boot Loader 的 stage2 准备 RAM 空间。
 
* 拷贝 Boot Loader 的 stage2 到 RAM 空间中。
 
* 设置好堆栈。
 
* 跳转到 stage2 的 C 入口点。
 
Boot Loader 的 stage2 通常包括以下步骤(以执行的先后顺序):
 
* 初始化本阶段要使用到的硬件设备。
 
* 检测系统内存映射(memory map)。
 
* 将 kernel 映像和根文件系统映像从 flash 上读到 RAM 空间中。
 
* 为内核设置启动参数。
 
* 调用内核。
 
3.1 Boot Loader 的 stage1
 
3.1.1 基本的硬件初始化
 
这是 Boot Loader 一开始就执行的操作,其目的是为 stage2 的执行以及随后的 kernel 的执行准备好一些基本的硬件环境。它通常包括以下步骤(以执行的先后顺序):
 
1. 屏蔽所有的中断。为中断提供服务通常是 OS 设备驱动程序的责任,因此在 Boot Loader 的执行全过程中可以不必响应任何中断。中断屏蔽可以通过写 CPU 的中断屏蔽寄存器或状态寄存器(比如 ARM 的 CPSR 寄存器)来完成。
 
2. 设置 CPU 的速度和时钟频率。
 
3. RAM 初始化。包括正确地设置系统的内存控制器的功能寄存器以及各内存库控制寄存器等。
 
4. 初始化 LED。典型地,通过 GPIO 来驱动 LED,其目的是表明系统的状态是 OK 还是 Error。如果板子上没有 LED,那么也可以通过初始化 UART 向串口打印 Boot Loader 的 Logo 字符信息来完成这一点。
 
5. 关闭 CPU 内部指令/数据 cache。
 
3.1.2 为加载 stage2 准备 RAM 空间
 
为了获得更快的执行速度,通常把 stage2 加载到 RAM 空间中来执行,因此必须为加载 Boot Loader 的 stage2 准备好一段可用的 RAM 空间范围。
 
由于 stage2 通常是 C 语言执行代码,因此在考虑空间大小时,除了 stage2 可执行映象的大小外,还必须把堆栈空间也考虑进来。此外,空间大小最好是 memory page 大小(通常是 4KB)的倍数。一般而言,1M 的 RAM 空间已经足够了。具体的地址范围可以任意安排,比如 blob 就将它的 stage2 可执行映像安排到从系统 RAM 起始地址 0xc0200000 开始的 1M 空间内执行。但是,将 stage2 安排到整个 RAM 空间的最顶 1MB(也即(RamEnd-1MB) - RamEnd)是一种值得推荐的方法。
 
为了后面的叙述方便,这里把所安排的 RAM 空间范围的大小记为:stage2_size(字节),把起始地址和终止地址分别记为:stage2_start 和 stage2_end(这两个地址均以 4 字节边界对齐)。因此:
 
 
stage2_end=stage2_start+stage2_size
 
另外,还必须确保所安排的地址范围的的确确是可读写的 RAM 空间,因此,必须对你所安排的地址范围进行测试。具体的测试方法可以采用类似于 blob 的方法,也即:以 memory page 为被测试单位,测试每个 memory page 开始的两个字是否是可读写的。为了后面叙述的方便,我们记这个检测算法为:test_mempage,其具体步骤如下:
 
1. 先保存 memory page 一开始两个字的内容。
 
2. 向这两个字中写入任意的数字。比如:向第一个字写入 0x55,第 2 个字写入 0xaa。
 
3. 然后,立即将这两个字的内容读回。显然,我们读到的内容应该分别是 0x55 和 0xaa。如果不是,则说明这个 memory page 所占据的地址范围不是一段有效的 RAM 空间。
 
4. 再向这两个字中写入任意的数字。比如:向第一个字写入 0xaa,第 2 个字中写入 0x55。
 
5. 然后,立即将这两个字的内容立即读回。显然,我们读到的内容应该分别是 0xaa 和 0x55。如果不是,则说明这个 memory page 所占据的地址范围不是一段有效的 RAM 空间。
 
6. 恢复这两个字的原始内容。测试完毕。
 
为了得到一段干净的 RAM 空间范围,我们也可以将所安排的 RAM 空间范围进行清零操作。
 
3.1.3 拷贝 stage2 到 RAM 中
 
拷贝时要确定两点:(1) stage2 的可执行映象在固态存储设备的存放起始地址和终止地址;(2) RAM 空间的起始地址。
 
3.1.4 设置堆栈指针 sp
 
堆栈指针的设置是为了执行 C 语言代码作好准备。通常我们可以把 sp 的值设置为(stage2_end-4),也即在 3.1.2 节所安排的那个 1MB 的 RAM 空间的最顶端(堆栈向下生长)。
 
此外,在设置堆栈指针 sp 之前,也可以关闭 led 灯,以提示用户我们准备跳转到 stage2。
 
经过上述这些执行步骤后,系统的物理内存布局应该如下图2所示。
 
3.1.5 跳转到 stage2 的 C 入口点
 
在上述一切都就绪后,就可以跳转到 Boot Loader 的 stage2 去执行了。比如,在 ARM 系统中,这可以通过修改 PC 寄存器为合适的地址来实现。
 
图2 bootloader 的 stage2 可执行映象刚被拷贝到 RAM 空间时的系统内存布局
 
3.2 Boot Loader 的 stage2
 
正如前面所说,stage2 的代码通常用 C 语言来实现,以便于实现更复杂的功能和取得更好的代码可读性和可移植性。但是与普通 C 语言应用程序不同的是,在编译和链接 boot loader 这样的程序时,我们不能使用 glibc 库中的任何支持函数。其原因是显而易见的。这就给我们带来一个问题,那就是从那里跳转进 main() 函数呢?直接把 main() 函数的起始地址作为整个 stage2 执行映像的入口点或许是最直接的想法。但是这样做有两个缺点:1)无法通过main() 函数传递函数参数;2)无法处理 main() 函数返回的情况。一种更为巧妙的方法是利用 trampoline(弹簧床)的概念。也即,用汇编语言写一段trampoline 小程序,并将这段 trampoline 小程序来作为 stage2 可执行映象的执行入口点。然后我们可以在 trampoline 汇编小程序中用 CPU 跳转指令跳入 main() 函数中去执行;而当 main() 函数返回时,CPU 执行路径显然再次回到我们的 trampoline 程序。简而言之,这种方法的思想就是:用这段 trampoline 小程序来作为 main() 函数的外部包裹(external wrapper)。
 
下面给出一个简单的 trampoline 程序示例(来自blob):
 
 
.text
 
.globl _trampoline
_trampoline:
bl main
/* if main ever returns we just call it again */
b _trampoline
 
可以看出,当 main() 函数返回后,我们又用一条跳转指令重新执行 trampoline 程序――当然也就重新执行 main() 函数,这也就是 trampoline(弹簧床)一词的意思所在。
 
3.2.1初始化本阶段要使用到的硬件设备
 
这通常包括:(1)初始化至少一个串口,以便和终端用户进行 I/O 输出信息;(2)初始化计时器等。
 
在初始化这些设备之前,也可以重新把 LED 灯点亮,以表明我们已经进入 main() 函数执行。
 
设备初始化完成后,可以输出一些打印信息,程序名字字符串、版本号等。
 
3.2.2 检测系统的内存映射(memory map)
 
所谓内存映射就是指在整个 4GB 物理地址空间中有哪些地址范围被分配用来寻址系统的 RAM 单元。比如,在 SA-1100 CPU 中,从 0xC000,0000 开始的 512M 地址空间被用作系统的 RAM 地址空间,而在 Samsung S3C44B0X CPU 中,从 0x0c00,0000 到 0x1000,0000 之间的 64M 地址空间被用作系统的 RAM 地址空间。虽然 CPU 通常预留出一大段足够的地址空间给系统 RAM,但是在搭建具体的嵌入式系统时却不一定会实现 CPU 预留的全部 RAM 地址空间。也就是说,具体的嵌入式系统往往只把 CPU 预留的全部 RAM 地址空间中的一部分映射到 RAM 单元上,而让剩下的那部分预留 RAM 地址空间处于未使用状态。由于上述这个事实,因此 Boot Loader 的 stage2 必须在它想干点什么 (比如,将存储在 flash 上的内核映像读到 RAM 空间中) 之前检测整个系统的内存映射情况,也即它必须知道 CPU 预留的全部 RAM 地址空间中的哪些被真正映射到 RAM 地址单元,哪些是处于 "unused" 状态的。
 
(1) 内存映射的描述
 
可以用如下数据结构来描述 RAM 地址空间中的一段连续(continuous)的地址范围:
 
 
typedef struct memory_area_struct {
u32 start; /* the base address of the memory region */
u32 size; /* the byte number of the memory region */
int used;
} memory_area_t;
 
这段 RAM 地址空间中的连续地址范围可以处于两种状态之一:(1)used=1,则说明这段连续的地址范围已被实现,也即真正地被映射到 RAM 单元上。(2)used=0,则说明这段连续的地址范围并未被系统所实现,而是处于未使用状态。
 
基于上述 memory_area_t 数据结构,整个 CPU 预留的 RAM 地址空间可以用一个 memory_area_t 类型的数组来表示,如下所示:
 
 
memory_area_t memory_map[NUM_MEM_AREAS] = {
[0 ... (NUM_MEM_AREAS - 1)] = {
.start = 0,
.size = 0,
.used = 0
},
};
 
(2) 内存映射的检测
 
下面我们给出一个可用来检测整个 RAM 地址空间内存映射情况的简单而有效的算法:
 
 
/* 数组初始化 */
for(i = 0; i < NUM_MEM_AREAS; i++)
memory_map[i].used = 0;
 
/* first write a 0 to all memory locations */
for(addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE)
* (u32 *)addr = 0;
 
for(i = 0, addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE) {
/*
* 检测从基地址 MEM_START+i*PAGE_SIZE 开始,大小为
* PAGE_SIZE 的地址空间是否是有效的RAM地址空间。
*/
调用3.1.2节中的算法test_mempage();
if ( current memory page isnot a valid ram page) {
/* no RAM here */
if(memory_map[i].used )
i++;
continue;
}
 
/*
* 当前页已经是一个被映射到 RAM 的有效地址范围
* 但是还要看看当前页是否只是 4GB 地址空间中某个地址页的别名?
*/
if(* (u32 *)addr != 0) { /* alias? */
/* 这个内存页是 4GB 地址空间中某个地址页的别名 */
if ( memory_map[i].used )
i++;
continue;
}
 
/*
* 当前页已经是一个被映射到 RAM 的有效地址范围
* 而且它也不是 4GB 地址空间中某个地址页的别名。
*/
if (memory_map[i].used == 0) {
memory_map[i].start = addr;
memory_map[i].size = PAGE_SIZE;
memory_map[i].used = 1;
} else {
memory_map[i].size += PAGE_SIZE;
}
} /* end of for (…) */
 
在用上述算法检测完系统的内存映射情况后,Boot Loader 也可以将内存映射的详细信息打印到串口。
 
3.2.3 加载内核映像和根文件系统映像
 
(1) 规划内存占用的布局
 
这里包括两个方面:(1)内核映像所占用的内存范围;(2)根文件系统所占用的内存范围。在规划内存占用的布局时,主要考虑基地址和映像的大小两个方面。
 
对于内核映像,一般将其拷贝到从(MEM_START+0x8000) 这个基地址开始的大约1MB大小的内存范围内(嵌入式 Linux 的内核一般都不操过 1MB)。为什么要把从 MEM_START 到 MEM_START+0x8000 这段 32KB 大小的内存空出来呢?这是因为 Linux 内核要在这段内存中放置一些全局数据结构,如:启动参数和内核页表等信息。
 
而对于根文件系统映像,则一般将其拷贝到 MEM_START+0x0010,0000 开始的地方。如果用 Ramdisk 作为根文件系统映像,则其解压后的大小一般是1MB。
 
(2)从 Flash 上拷贝
 
由于像 ARM 这样的嵌入式 CPU 通常都是在统一的内存地址空间中寻址 Flash 等固态存储设备的,因此从 Flash 上读取数据与从 RAM 单元中读取数据并没有什么不同。用一个简单的循环就可以完成从 Flash 设备上拷贝映像的工作:
 
 
while(count) {
*dest++ = *src++; /* they are all aligned with word boundary */
count -= 4; /* byte number */
};
 
3.2.4 设置内核的启动参数
 
应该说,在将内核映像和根文件系统映像拷贝到 RAM 空间中后,就可以准备启动 Linux 内核了。但是在调用内核之前,应该作一步准备工作,即:设置 Linux 内核的启动参数。
 
Linux 2.4.x 以后的内核都期望以标记列表(tagged list)的形式来传递启动参数。启动参数标记列表以标记 ATAG_CORE 开始,以标记 ATAG_NONE 结束。每个标记由标识被传递参数的 tag_header 结构以及随后的参数值数据结构来组成。数据结构 tag 和 tag_header 定义在 Linux 内核源码的include/asm/setup.h 头文件中:
 
 
/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE 0x00000000
 
struct tag_header {
u32 size; /* 注意,这里size是字数为单位的 */
u32 tag;
};
……
struct tag {
struct tag_header hdr;
union {
struct tag_core core;
struct tag_mem32 mem;
struct tag_videotext videotext;
struct tag_ramdisk ramdisk;
struct tag_initrd initrd;
struct tag_serialnr serialnr;
struct tag_revision revision;
struct tag_videolfb videolfb;
struct tag_cmdline cmdline;
 
/*
* Acorn specific
*/
struct tag_acorn acorn;
 
/*
* DC21285 specific
*/
struct tag_memclk memclk;
} u;
};
 
在嵌入式 Linux 系统中,通常需要由 Boot Loader 设置的常见启动参数有:ATAG_CORE、ATAG_MEM、ATAG_CMDLINE、ATAG_RAMDISK、ATAG_INITRD等。
 
比如,设置 ATAG_CORE 的代码如下:
 
 
params = (struct tag *)BOOT_PARAMS;
 
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size(tag_core);
 
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
 
params = tag_next(params);
 
其中,BOOT_PARAMS 表示内核启动参数在内存中的起始基地址,指针 params 是一个 struct tag 类型的指针。宏 tag_next() 将以指向当前标记的指针为参数,计算紧临当前标记的下一个标记的起始地址。注意,内核的根文件系统所在的设备ID就是在这里设置的。
 
下面是设置内存映射情况的示例代码:
 
 
for(i = 0; i < NUM_MEM_AREAS; i++) {
if(memory_map[i].used) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size(tag_mem32);
 
params->u.mem.start = memory_map[i].start;
params->u.mem.size = memory_map[i].size;
 
params = tag_next(params);
}
}
 
可以看出,在 memory_map[]数组中,每一个有效的内存段都对应一个 ATAG_MEM 参数标记。
 
Linux 内核在启动时可以以命令行参数的形式来接收信息,利用这一点我们可以向内核提供那些内核不能自己检测的硬件参数信息,或者重载(override)内核自己检测到的信息。比如,我们用这样一个命令行参数字符串"console=ttyS0,115200n8"来通知内核以 ttyS0 作为控制台,且串口采用 "115200bps、无奇偶校验、8位数据位"这样的设置。下面是一段设置调用内核命令行参数字符串的示例代码:
 
 
char *p;
 
/* eat leading white space */
for(p = commandline; *p == ' '; p++)
;
 
/* skip non-existent command lines so the kernel will still
* use its default command line.
*/
if(*p == '/0')
return;
 
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size = (sizeof(struct tag_header) + strlen(p) + 1 + 4) >> 2;
 
strcpy(params->u.cmdline.cmdline, p);
 
params = tag_next(params);
 
请注意在上述代码中,设置 tag_header 的大小时,必须包括字符串的终止符'/0',此外还要将字节数向上圆整4个字节,因为 tag_header 结构中的size 成员表示的是字数。
 
下面是设置 ATAG_INITRD 的示例代码,它告诉内核在 RAM 中的什么地方可以找到 initrd 映象(压缩格式)以及它的大小:
 
 
params->hdr.tag = ATAG_INITRD2;
params->hdr.size = tag_size(tag_initrd);
 
params->u.initrd.start = RAMDISK_RAM_BASE;
params->u.initrd.size = INITRD_LEN;
 
params = tag_next(params);
 
下面是设置 ATAG_RAMDISK 的示例代码,它告诉内核解压后的 Ramdisk 有多大(单位是KB):
 
 
params->hdr.tag = ATAG_RAMDISK;
params->hdr.size = tag_size(tag_ramdisk);
 
params->u.ramdisk.start = 0;
params->u.ramdisk.size = RAMDISK_SIZE; /* 请注意,单位是KB */
params->u.ramdisk.flags = 1; /* automatically load ramdisk */
 
params = tag_next(params);
 
最后,设置 ATAG_NONE 标记,结束整个启动参数列表:
 
 
static void setup_end_tag(void)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
 
3.2.5 调用内核
 
Boot Loader 调用 Linux 内核的方法是直接跳转到内核的第一条指令处,也即直接跳转到 MEM_START+0x8000 地址处。在跳转时,下列条件要满足:
 
1. CPU 寄存器的设置:
 
* R0=0;
 
* R1=机器类型 ID;关于 Machine Type Number,可以参见 linux/arch/arm/tools/mach-types。
 
* R2=启动参数标记列表在 RAM 中起始基地址;
 
2. CPU 模式:
 
* 必须禁止中断(IRQs和FIQs);
 
* CPU 必须 SVC 模式;
 
3. Cache 和 MMU 的设置:
 
* MMU 必须关闭;
 
* 指令 Cache 可以打开也可以关闭;
 
* 数据 Cache 必须关闭;
 
如果用 C 语言,可以像下列示例代码这样来调用内核:
 
 
void (*theKernel)(int zero, int arch, u32 params_addr) = (void (*)(int, int, u32))KERNEL_RAM_BASE;
……
theKernel(0, ARCH_NUMBER, (u32) kernel_params_start);
 
注意,theKernel()函数调用应该永远不返回的。如果这个调用返回,则说明出错。
 
4. 关于串口终端
在 boot loader 程序的设计与实现中,没有什么能够比从串口终端正确地收到打印信息能更令人激动了。此外,向串口终端打印信息也是一个非常重要而又有效的调试手段。但是,我们经常会碰到串口终端显示乱码或根本没有显示的问题。造成这个问题主要有两种原因:(1) boot loader 对串口的初始化设置不正确。(2) 运行在 host 端的终端仿真程序对串口的设置不正确,这包括:波特率、奇偶校验、数据位和停止位等方面的设置。
 
此外,有时也会碰到这样的问题,那就是:在 boot loader 的运行过程中我们可以正确地向串口终端输出信息,但当 boot loader 启动内核后却无法看到内核的启动输出信息。对这一问题的原因可以从以下几个方面来考虑:
 
(1) 首先请确认你的内核在编译时配置了对串口终端的支持,并配置了正确的串口驱动程序。
 
(2) 你的 boot loader 对串口的初始化设置可能会和内核对串口的初始化设置不一致。此外,对于诸如 s3c44b0x 这样的 CPU,CPU 时钟频率的设置也会影响串口,因此如果 boot loader 和内核对其 CPU 时钟频率的设置不一致,也会使串口终端无法正确显示信息。
 
(3) 最后,还要确认 boot loader 所用的内核基地址必须和内核映像在编译时所用的运行基地址一致,尤其是对于 uClinux 而言。假设你的内核映像在编译时用的基地址是 0xc0008000,但你的 boot loader 却将它加载到 0xc0010000 处去执行,那么内核映像当然不能正确地执行了。
 
5. 结束语
Boot Loader 的设计与实现是一个非常复杂的过程。如果不能从串口收到那激动人心的"uncompressing linux.................. done, booting the kernel……"内核启动信息,恐怕谁也不能说:"嗨,我的 boot loader 已经成功地转起来了!"。
关于作者
詹荣开,研究兴趣包括:嵌入式 Linux、Linux 内核、驱动程序、文件系统等。您可以通过 zhanrk@sohu.com 连系他。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

嵌入式系统 Boot Loader 技术内幕 的相关文章

  • 蚂蚁金服二轮面试(P7岗)经验分享

    特意注册了个新号 xff0c 发表下记录自己此次蚂蚁金服的面试情况 xff0c 为了感谢大家面试经历的分享 xff0c 也是对自己面试的总结和复盘 上周三面试 xff0c 截止到现在一周过去啦 xff0c 还没有消息 xff0c 面试过程也
  • 堪比当年的LSTM,Transformer引燃机器学习圈:它是万能的

    视学算法报道 转载自公众号 xff1a 机器之心 作者 xff1a 魔王 谷歌研究科学家 David Ha xff1a Transformer 是新的 LSTM 2017 年 6 月谷歌发布论文 Attention is All You N
  • linux 睡眠函数——sleep(),usleep()

    http blog csdn net gpengtao article details 7887293 include lt unistd h gt unsigned int sleep unsigned int seconds 睡眠秒 返
  • 软件工程复试——九、面向对象方法学引论

    九 面向对象方法学引论 面向对象方法学的出发点和原则是尽可能模拟人类思维方式 xff0c 使开发软件的方法与过程尽可能接近人类认识世界解决问题的方法与过程 xff0c 使描述空间的问题域与求解域在结构上保持一致 面向对象方法的四个要点 xf
  • FreeRTOS+TCP模块移植

    上一版本移植并没有写的很详细 xff0c 只是将改好的代码贴上去 xff0c 今天更新一版 xff0c 附带资源 上一版本用的是FreeRTOS V10 0 1 这一版采用了最新的FreeRTOS V10 3 1 在正确移植FreeRTOS
  • PID控制器讲解

    这个视频教程讲的非常好 xff0c 从理论层面到应用 xff0c 强烈推荐有兴趣的同学看一下 https www bilibili com video BV1B54y1V7hp
  • Python学习笔记丨while、for、if循环结构基础知识与易错点

    Python流程控制 本篇笔记的主要内容是 xff1a 条件控制和循环控制 xff0c 包括if语句 while语句 for语句等 Python条件控制 span class hljs keyword style color c678dd
  • R语言安装R包的方法,mac、windows、linux安装R包常见问题与解决方法

    R语言如何快速安装R包 xff1f 如果把R比作是沃土的话 xff0c 那么R包就是鲜花 xff0c 开源共享的开发者社区提供了很多功能丰富的R包 xff0c 方便使用者充分利用R语言完成工作 但是 xff0c 有时候在安装R包是会遇到各种
  • kube-ovn代码系列(四)pod 安全组功能

    kube ovn代码系列 xff08 四 xff09 pod 安全组功能 链接 https www gogo dev com index php 2022 02 19 kube ovn securitygroup 内容 kube ovn在1
  • Ubuntu20.04下运行VINS系列:VINS-Mono、VINS-Fusion和GVINS

    文章目录 一 安装VINS Mono1 1 适配Ceres2 1 01 2 适配OpenCV41 3 编译运行 二 安装VINS Fusion2 1 适配Ceres2 1 0和OpenCV42 2 编译运行2 2 1 EuRoC数据集2 2
  • 最小花费

    题目描述 在n个人中 xff0c 某些人的银行账号之间可以互相转账 这些人之间转账的手续费各不相同 给定这些人之间转账时需要从转账金额里扣除百分之几的手续费 xff0c 请问A最少需要多少钱使得转账后B收到100元 输入格式 第一行输入两个
  • 传感器融合sensor fusion

    自动控制系统中的传感器融合 传感器融合的4个作用 xff1a 1 增加数据质量 比如减少噪声 xff1b 2 增加可靠性 多传感器互为备份 xff1b 3 估计预测状态 xff1b 4 可增加被测范围 相对于单个传感器来说 xff0c 多传
  • 摄像机成像原理(模型)与标定

    一般摄像机简化为小孔成像的理想模型 xff08 线性模型 xff09 xff0c 因为摄像机镜头 xff08 视场角 xff09 很小 xff0c 相当于被拍摄物体通过小孔投影到感光元件CCD CMOS上 对于加了各种镜头的摄像机 xff0
  • 实习周记2

    在组长准备给我布置小任务的时候 xff0c 公司开了一个新的项目并且缺前端 xff0c 我就被分配到新项目中去 xff0c 这个项目使用 angular 43 bootstrap前端框架 这不是一个初次开发的项目 xff0c 而是一个需要修
  • OBJ可视化——UV还原(修正)

    前言 前面写过一篇obj格式解析的博客 xff0c 但是这篇文章中可视化的工作是参考PRNet的源码进行的 xff0c 后来细细思考了一下 xff0c 有点问题 xff0c 具体看下面 问题来源 在PRNet源码的render py中有个函
  • Unity中BVH骨骼动画驱动的可视化理论与实现

    前言 找了很久使用BVH到unity中驱动骨骼动画的代码 xff0c 但是都不是特别好用 xff0c 自己以前写过 xff0c 原理很简单 xff0c 这里记录一下 理论 初始姿态 在BVH或者其它骨骼动画中 xff0c 一般涉及到三种姿势
  • 卡通驱动项目ThreeDPoseTracker——模型驱动解析

    前言 之前解析过ThreeDPoseTracker这个项目中的深度学习模型 xff0c 公众号有兄弟私信一些问题 xff0c 我刚好对这个项目实现有兴趣 xff0c 就分析一波源码 xff0c 顺便把问题解答一下 这个源码其实包括很多内容
  • 卡通驱动项目ThreeDPoseTracker——关键点平滑方案解析

    前言 之前对ThreeDPoseTracker的深度学习模型和unity中的驱动方法进行过解析 xff0c 还有一个比较重要的就是从深度学习模型出来的3D关键点数据会有抖动 xff0c 在ThreeDPoseTracker源码中有做两次平滑
  • 卡通角色表情驱动系列一

    前言 分析完ThreeDPoseTracker来做卡通角色的身体驱动 xff0c 接下来在卡通驱动领域还有一个是表情驱动 对这个真的是一窍不通啊 xff0c 只能慢慢看论文了 国际惯例 xff0c 参考博客 论文 xff1a Landmar
  • opencv相机标定和人头姿态估计案例

    前言 头部驱动除了之前关注的表情驱动外 xff0c 还有眼球驱动和头部方向驱动 本博客基于opencv官方文档和部分开源代码来研究如何基于人脸关键点获取头部的朝向 国际惯例 xff0c 参考博客 xff1a opencv Camera Ca

随机推荐

  • 卡通角色表情驱动系列二

    前言 之前介绍了使用传统算法求解BS系数的表情驱动方法 xff0c 其中提到过的三种方法之一是基于网格形变迁移做的 xff0c 那么这篇文章就是对 Deformation Transfer for Triangle Meshes 做表情驱动
  • HDU 1085 Holding Bin-Laden Captive!(母函数)

    HDU 1085 Holding Bin Laden Captive xff08 母函数 xff09 题目地址 题意 xff1a 给你cnt1个一元硬币 xff0c cnt2个两元硬币 xff0c cnt3个五元硬币 xff0c 问不能凑出
  • UE自带重定向原理

    UE自带重定向方法验证 核心源码在VS的解决方案中的位置 xff1a UE4 Source Developer AssetTools Private AssetTypeActions AnimSequence cpp中第3237行Remap
  • matlab之bsxfun函数

    lt span style 61 34 font size 18px color ff0000 34 gt 简单的调用方法 xff1a lt span gt bsxfun 64 plus xff0c A xff0c B xff0c 其中 6
  • 关于协方差矩阵需要注意的一个事项

    协方差矩阵是衡量样本的属性 即维度 之间的关系 xff0c 而不是样本与样本之间的关系 比如有100个样本 xff0c 每个样本10个属性 xff0c 那么计算得到的协方差矩阵一定是10 10的 xff0c 而不是100 100的 xff0
  • 【caffe-Windows】caffe+VS2013+Windows+GPU配置+cifar使用

    前言 国际惯例 xff0c 先来波地址 xff1a CUDA WIN7 xff1a 链接 xff1a http pan baidu com s 1nvyA3Qp 密码 xff1a h0f3 官方网址 xff1a https develope
  • 【caffe-Windows】以mnist为例lmdb格式数据

    前言 前面介绍的案例都是leveldb的格式 xff0c 但是比较流行和实用的格式是lmdb xff0c 原因从此网站摘取 它们都是键 值对 xff08 Key Value Pair xff09 嵌入式数据库管理系统编程库 虽然lmdb的内
  • 【theano-windows】学习笔记十——多层感知机手写数字分类

    前言 上一篇学习了softmax 然后更进一步就是学习一下基本的多层感知机 MLP 了 其实多层感知机同时就是w x 43 b用某个激活函数激活一下 得到的结果作为下一层神经元的输入x 类似于 o u t p u t 61 f 3 f 2
  • 【theano-windows】学习笔记二十——LSTM理论及实现

    前言 上一篇学习了RNN xff0c 也知道了在沿着时间线对上下文权重求梯度的时候 xff0c 可能会导致梯度消失或者梯度爆炸 xff0c 然后我们就得学习一波比较常见的优化方法之LSTM 国际惯例 xff0c 参考网址 xff1a LST
  • 【TensorFlow-windows】keras接口——ImageDataGenerator裁剪

    前言 Keras中有一个图像数据处理器ImageDataGenerator xff0c 能够很方便地进行数据增强 xff0c 并且从文件中批量加载图片 xff0c 避免数据集过大时 xff0c 一下子加载进内存会崩掉 但是从官方文档发现 x
  • 梯度下降法与Logistic Regression 及 Matlab 代码

    梯度下降法与Logistic Regression 及 Matlab 代码 前言Logistic回归梯度下降法例子1 xff0c 固定学习率改进1 xff1a 正则化改进2 xff1a 动态学习率查看分类效果不足完整代码 前言 本质是一个求
  • ONOS 控制器安装和app新建和编译

    1 1 ONOS 控制器编译与安装 ONOS 1 8 版本起强制使用 BUCK 构建工具 xff0c 不再使用 maven xff0c 编译和打包方式与旧版本有所区别 步骤 xff1a 配置环境 gt 下代码 gt 编译 gt 运行 配置环
  • SQLyog(navica)连接docker容器中的mysql8.0.12 报错1251或2003解决办法

    使用SQLyog xff08 navicat xff09 远程连接docker容器中的mysql8 0 12 报以下错误 解决办法 xff1a 一 在docker中启动mysql 定义端口号3306 root 64 localhost do
  • TTY 到底是个什么玩意?

    先来回答一道面试题 xff1a 我们知道在终端中有一些常用的快捷键 xff0c Ctrl 43 E 可以移动到行尾 xff0c Ctrl 43 W 可以删除一个单词 xff0c Ctrl 43 B 可以向前移动一个字母 xff0c 按上键可
  • 如何画好一份架构图

    先说答案 画架构图分四步走 xff1a 第一 xff0c 搞清楚要画的架构图的类型 xff1b 第二 xff0c 确认架构图中的关键要素 xff08 比如产品 技术 服务 xff09 xff1b 第三 xff0c 梳理关键要素之间的关联 x
  • NVIDIA Jetson Xavier NX 深度学习相关组件安装

    一 tensorflow的安装 写在前面的牢骚话 xff08 可选择直接跳过 xff09 在写安装tensorflow的教程之前 xff0c 我一定要放出当时我安装tensorflow时所遇到的那些莫名其妙的错误 xff0c 具体错误如下图
  • Python - Decorator(装饰器) - 带参数的

    我们通过以示例来看看带参数的装饰器到底怎么回事 from time import perf counter from functools import wraps def repeated times def outer fn 64 wra
  • 2020塔式起重机司机考试及塔式起重机司机考试软件

    题库来源 xff1a 安全生产模拟考试一点通公众号小程序 2020塔式起重机司机考试及塔式起重机司机考试软件 xff0c 包含塔式起重机司机考试答案解析及塔式起重机司机考试软件练习 由安全生产模拟考试一点通公众号结合国家塔式起重机司机考试最
  • 2020煤炭生产经营单位(安全生产管理人员)操作证考试及煤炭生产经营单位(安全生产管理人员)模拟考试软件

    题库来源 xff1a 安全生产模拟考试一点通公众号小程序 2020煤炭生产经营单位 xff08 安全生产管理人员 xff09 操作证考试及煤炭生产经营单位 xff08 安全生产管理人员 xff09 模拟考试软件 xff0c 包含煤炭生产经营
  • 嵌入式系统 Boot Loader 技术内幕

    内容 xff1a 1 引言 2 Boot Loader 的概念 3 Boot Loader 的主要任务与典型结构框架 4 关于串口终端 5 结束语 关于作者 对于本文的评价 在 Linux 专区还有 xff1a 教程 工具与产品 代码与组件