用于左包装字节元素的高效 sse shuffle mask 生成

2024-01-31

使用 sse 优化以下代码的有效方法是什么?

uint16_t change1= ... ;
uint8_t* pSrc   = ... ;
uint8_t* pDest  = ... ;

if(change1 & 0x0001) *pDest++ = pSrc[0];
if(change1 & 0x0002) *pDest++ = pSrc[1];
if(change1 & 0x0004) *pDest++ = pSrc[2];
if(change1 & 0x0008) *pDest++ = pSrc[3];

if(change1 & 0x0010) *pDest++ = pSrc[4];
if(change1 & 0x0020) *pDest++ = pSrc[5];
if(change1 & 0x0040) *pDest++ = pSrc[6];
if(change1 & 0x0080) *pDest++ = pSrc[7];

if(change1 & 0x0100) *pDest++ = pSrc[8];
if(change1 & 0x0200) *pDest++ = pSrc[9];
if(change1 & 0x0400) *pDest++ = pSrc[10];
if(change1 & 0x0800) *pDest++ = pSrc[11];

if(change1 & 0x1000) *pDest++ = pSrc[12];
if(change1 & 0x2000) *pDest++ = pSrc[13];
if(change1 & 0x4000) *pDest++ = pSrc[14];
if(change1 & 0x8000) *pDest++ = pSrc[15];

到目前为止,我正在使用一个相当大的查找表,但我真的想摆脱它:

SSE3Shuffle::Entry& e0 = SSE3Shuffle::g_Shuffle.m_Entries[change1];
_mm_storeu_si128((__m128i*)pDest, _mm_shuffle_epi8(*(__m128i*)pSrc, e0.mask));
pDest += e0.offset;

假设:

change1 = _mm_movemask_epi8(bytemask);
offset = popcnt(change1);

在大型缓冲区上,使用两次洗牌和 1 KiB 表仅比使用 1 次洗牌和 1MiB 表慢约 10%。我尝试通过前缀和和位旋转来生成洗牌掩码,大约是基于表的方法速度的一半 (解决方案使用pext/pdep没有探索过)。

减少表大小:对 2 KiB 表使用两次查找,而不是对 1 MiB 表进行 1 次查找。始终保留最上面的字节 - 如果要丢弃该字节,那么该位置是什么字节并不重要(低至 7 位索引或 1 KiB 表)。通过手动打包每个 16 位通道中的两个字节(减少到 216 字节表),进一步减少可能的组合。

以下示例使用以下方法从文本中去除空格SSE4.1。要是SSSE3那么可用blendv可以效仿。 64 位的一半通过重叠写入内存来重新组合,但它们可以在xmm注册(如在AVX2例子)。

#include <stdint.h>
#include <smmintrin.h> // SSE4.1

size_t despacer (void* dst_void, void* src_void, size_t length)
{
    uint8_t* src = (uint8_t*)src_void;
    uint8_t* dst = (uint8_t*)dst_void;

    if (length >= 16) {
        // table of control characters (space, tab, newline, carriage return)
        const __m128i lut_cntrl = _mm_setr_epi8(' ', 0, 0, 0, 0, 0, 0, 0, 0, '\t', '\n', 0, 0, '\r', 0, 0);

        // bits[4:0] = index -> ((trit_d * 0) + (trit_c * 9) + (trit_b * 3) + (trit_a * 1))
        // bits[15:7] = popcnt
        const __m128i sadmask = _mm_set1_epi64x(0x8080898983838181);

        // adding 8 to each shuffle index is cheaper than extracting the high qword
        const __m128i offset = _mm_cvtsi64_si128(0x0808080808080808);

        // shuffle control indices
        static const uint64_t table[27] = {
            0x0000000000000706, 0x0000000000070600, 0x0000000007060100, 0x0000000000070602,
            0x0000000007060200, 0x0000000706020100, 0x0000000007060302, 0x0000000706030200,
            0x0000070603020100, 0x0000000000070604, 0x0000000007060400, 0x0000000706040100,
            0x0000000007060402, 0x0000000706040200, 0x0000070604020100, 0x0000000706040302,
            0x0000070604030200, 0x0007060403020100, 0x0000000007060504, 0x0000000706050400,
            0x0000070605040100, 0x0000000706050402, 0x0000070605040200, 0x0007060504020100,
            0x0000070605040302, 0x0007060504030200, 0x0706050403020100
        };

        const uint8_t* end = &src[length & ~15];
        do {
            __m128i v = _mm_loadu_si128((__m128i*)src);
            src += 16;

            // detect spaces
            __m128i mask = _mm_cmpeq_epi8(_mm_shuffle_epi8(lut_cntrl, v), v);

            // shift w/blend: each word now only has 3 states instead of 4
            // which reduces the possiblities per qword from 128 to 27
            v = _mm_blendv_epi8(v, _mm_srli_epi16(v, 8), mask);

            // extract bitfields describing each qword: index, popcnt
            __m128i desc = _mm_sad_epu8(_mm_and_si128(mask, sadmask), sadmask);
            size_t lo_desc = (size_t)_mm_cvtsi128_si32(desc);
            size_t hi_desc = (size_t)_mm_extract_epi16(desc, 4);

            // load shuffle control indices from pre-computed table
            __m128i lo_shuf = _mm_loadl_epi64((__m128i*)&table[lo_desc & 0x1F]);
            __m128i hi_shuf = _mm_or_si128(_mm_loadl_epi64((__m128i*)&table[hi_desc & 0x1F]), offset);

            // store an entire qword then advance the pointer by how ever
            // many of those bytes are actually wanted. Any trailing
            // garbage will be overwritten by the next store.
            // note: little endian byte memory order
            _mm_storel_epi64((__m128i*)dst, _mm_shuffle_epi8(v, lo_shuf));
            dst += (lo_desc >> 7);
            _mm_storel_epi64((__m128i*)dst, _mm_shuffle_epi8(v, hi_shuf));
            dst += (hi_desc >> 7);
        } while (src != end);
    }

    // tail loop
    length &= 15;
    if (length != 0) {
        const uint64_t bitmap = 0xFFFFFFFEFFFFC1FF;
        do {
            uint64_t c = *src++;
            *dst = (uint8_t)c;
            dst += ((bitmap >> c) & 1) | ((c + 0xC0) >> 8);
        } while (--length);
    }

    // return pointer to the location after the last element in dst
    return (size_t)(dst - ((uint8_t*)dst_void));
}

尾循环是否应该向量化或使用cmov留给读者作为练习。当输入不可预测时,无条件/无分支地写入每个字节的速度很快。


Using AVX2使用寄存器内表生成洗牌控制掩码仅比使用大型预计算表慢一点。

#include <stdint.h>
#include <immintrin.h>

// probably needs improvment...
size_t despace_avx2_vpermd(const char* src_void, char* dst_void, size_t length)
{
    uint8_t* src = (uint8_t*)src_void;
    uint8_t* dst = (uint8_t*)dst_void;

    const __m256i lut_cntrl2    = _mm256_broadcastsi128_si256(_mm_setr_epi8(' ', 0, 0, 0, 0, 0, 0, 0, 0, '\t', '\n', 0, 0, '\r', 0, 0));
    const __m256i permutation_mask = _mm256_set1_epi64x( 0x0020100884828180 );
    const __m256i invert_mask = _mm256_set1_epi64x( 0x0020100880808080 ); 
    const __m256i zero = _mm256_setzero_si256();
    const __m256i fixup = _mm256_set_epi32(
        0x08080808, 0x0F0F0F0F, 0x00000000, 0x07070707,
        0x08080808, 0x0F0F0F0F, 0x00000000, 0x07070707
    );
    const __m256i lut = _mm256_set_epi32(
        0x04050607, // 0x03020100', 0x000000'07
        0x04050704, // 0x030200'00, 0x0000'0704
        0x04060705, // 0x030100'00, 0x0000'0705
        0x04070504, // 0x0300'0000, 0x00'070504
        0x05060706, // 0x020100'00, 0x0000'0706
        0x05070604, // 0x0200'0000, 0x00'070604
        0x06070605, // 0x0100'0000, 0x00'070605
        0x07060504  // 0x00'000000, 0x'07060504
    );

    // hi bits are ignored by pshufb, used to reject movement of low qword bytes
    const __m256i shuffle_a = _mm256_set_epi8(
        0x7F, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
        0x7F, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70
    );

    // broadcast 0x08 then blendd...
    const __m256i shuffle_b = _mm256_set_epi32(
        0x08080808, 0x08080808, 0x00000000, 0x00000000,
        0x08080808, 0x08080808, 0x00000000, 0x00000000
    );

    for( uint8_t* end = &src[(length & ~31)]; src != end; src += 32){
        __m256i r0,r1,r2,r3,r4;
        unsigned int s0,s1;

        r0 = _mm256_loadu_si256((__m256i *)src); // asrc

        // detect spaces
        r1 = _mm256_cmpeq_epi8(_mm256_shuffle_epi8(lut_cntrl2, r0), r0);

        r2 = _mm256_sad_epu8(zero, r1);
        s0 = (unsigned)_mm256_movemask_epi8(r1);
        r1 = _mm256_andnot_si256(r1, permutation_mask);

        r1 = _mm256_sad_epu8(r1, invert_mask); // index_bitmap[0:5], low32_spaces_count[7:15]

        r2 = _mm256_shuffle_epi8(r2, zero);

        r2 = _mm256_sub_epi8(shuffle_a, r2); // add space cnt of low qword
        s0 = ~s0;

        r3 = _mm256_slli_epi64(r1, 29); // move top part of index_bitmap to high dword
        r4 = _mm256_srli_epi64(r1, 7); // number of spaces in low dword 

        r4 = _mm256_shuffle_epi8(r4, shuffle_b);
        r1 = _mm256_or_si256(r1, r3);

        r1 = _mm256_permutevar8x32_epi32(lut, r1);
        s1 = _mm_popcnt_u32(s0);
        r4 = _mm256_add_epi8(r4, shuffle_a);
        s0 = s0 & 0xFFFF; // isolate low oword

        r2 = _mm256_shuffle_epi8(r4, r2);
        s0 = _mm_popcnt_u32(s0);

        r2 = _mm256_max_epu8(r2, r4); // pin low qword bytes

        r1 = _mm256_xor_si256(r1, fixup);

        r1 = _mm256_shuffle_epi8(r1, r2); // complete shuffle mask

        r0 = _mm256_shuffle_epi8(r0, r1); // despace!

        _mm_storeu_si128((__m128i*)dst, _mm256_castsi256_si128(r0));
        _mm_storeu_si128((__m128i*)&dst[s0], _mm256_extracti128_si256(r0,1));
        dst += s1;
    }
    // tail loop
    length &= 31;
    if (length != 0) {
        const uint64_t bitmap = 0xFFFFFFFEFFFFC1FF;
        do {
            uint64_t c = *src++;
            *dst = (uint8_t)c;
            dst += ((bitmap >> c) & 1) | ((c + 0xC0) >> 8);
        } while (--length);
    }
    return (size_t)(dst - ((uint8_t*)dst_void));
}

对于后代,1 KiB 版本(生成表格留给读者作为练习)。

static const uint64_t table[128] __attribute__((aligned(64))) = {
    0x0706050403020100, 0x0007060504030201, ..., 0x0605040302010700, 0x0605040302010007 
};
const __m128i mask_01 = _mm_set1_epi8( 0x01 );

__m128i vector0 = _mm_loadu_si128((__m128i*)src);
__m128i vector1 = _mm_shuffle_epi32( vector0, 0x0E );

__m128i bytemask0 = _mm_cmpeq_epi8( ???, vector0); // detect bytes to omit

uint32_t bitmask0 = _mm_movemask_epi8(bytemask0) & 0x7F7F;
__m128i hsum = _mm_sad_epu8(_mm_add_epi8(bytemask0, mask_01), _mm_setzero_si128());

vector0 = _mm_shuffle_epi8(vector0, _mm_loadl_epi64((__m128i*) &table[(uint8_t)bitmask0]));
_mm_storel_epi64((__m128i*)dst, vector0);
dst += (uint32_t)_mm_cvtsi128_si32(hsum);

vector1 = _mm_shuffle_epi8(vector1, _mm_loadl_epi64((__m128i*) &table[bitmask0 >> 8]));
_mm_storel_epi64((__m128i*)dst, vector1);
dst += (uint32_t)_mm_cvtsi128_si32(_mm_unpackhi_epi64(hsum, hsum));

https://github.com/InstLatx64/AVX512_VPCOMPRESSB_Emu https://github.com/InstLatx64/AVX512_VPCOMPRESSB_Emu有一些基准。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

用于左包装字节元素的高效 sse shuffle mask 生成 的相关文章

随机推荐