K8S Flannel

2023-05-16

1. 简介

Flannel 由CoreOS开发,用于解决docker集群跨主机通讯的覆盖网络(overlay network),它的主要思路是:预先留出一个网段,每个主机使用其中一部分,然后每个容器被分配不同的ip;让所有的容器认为大家在同一个直连的网络,底层通过UDP/VxLAN/Host-GW等进行报文的封装和转发。

实现原理:

  • 集群中的不同节点上,创建的Pod具有全集群唯一的虚拟IP地址。

  • 建立一个覆盖网络(overlay network),通过这个覆盖网络,将数据包原封不动的传递到目标容器。覆盖网络通过将一个分组封装在另一个分组内来将网络服务与底层基础设施分离。在将封装的数据包转发到端点后,将其解封装。

  • 创建一个新的虚拟网卡flannel0接收docker网桥的数据,通过维护路由表,对接收到的数据进行封包和转发(vxlan)。

  • etcd保证了所有node上flanned所看到的配置是一致的。同时每个node上的flanned监听etcd上的数据变化,实时感知集群中node的变化。

2. Vxlan 模式

2.1 通信流程

img

不同node上的pod通信流程:

  1. pod中的数据,根据pod的路由信息,发送到网桥 cni0
  2. cni0 根据节点路由表,将数据发送到隧道设备flannel.1
  3. flannel.1 查看数据包的目的ip,从flanneld获取对端隧道设备的必要信息,封装数据包
  4. flannel.1 将数据包发送到对端设备。对端节点的网卡接收到数据包,发现数据包为overlay数据包,解开外层封装,并发送内层封装到flannel.1 设备
  5. Flannel.1 设备查看数据包,根据路由表匹配,将数据发送给cni0设备
  6. cni0匹配路由表,发送数据到网桥

2.2 部署

$ wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

# 配置 Pod CIDR 
$ vi kube-flannel.yml
  "Network": "10.244.0.0/16", 
  
# 多网卡时,可指定网卡
vi kube-flannel.yml
        command:
        - /opt/bin/flanneld
        args:
        - --ip-masq
        - --kube-subnet-mgr
        - --iface=ens38    # 指定网卡
        
$ kubectl apply -f kube-flannel.yml

$ kubectl get pod -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-8qnnx   1/1     Running   0          10s
kube-flannel-ds-979lc   1/1     Running   0          16m
kube-flannel-ds-kgmgg   1/1     Running   0          16m

集群节点上网络分配:

$ ip addr
6: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group default
    link/ether b6:95:2a:cd:01:c3 brd ff:ff:ff:ff:ff:ff
    inet 10.244.0.0/32 brd 10.244.0.0 scope global flannel.1
       valid_lft forever preferred_lft forever
    inet6 fe80::b495:2aff:fecd:1c3/64 scope link
       valid_lft forever preferred_lft forever
7: cni0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group default qlen 1000
    link/ether 16:ac:e9:68:a4:c0 brd ff:ff:ff:ff:ff:ff
    inet 10.244.0.1/24 brd 10.244.0.255 scope global cni0
       valid_lft forever preferred_lft forever
    inet6 fe80::14ac:e9ff:fe68:a4c0/64 scope link
       valid_lft forever preferred_lft forever

$ ethtool -i cni0
driver: bridge

$ ethtoo -i flannel.1
driver: vxlan

$ ps -ef | grep flanneld
root       15300   15275  0 10:21 ?        00:00:19 /opt/bin/flanneld --ip-masq --kube-subnet-mgr

$ route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.80.2    0.0.0.0         UG    0      0        0 ens33
10.244.0.0      10.244.0.0      255.255.255.0   UG    0      0        0 flannel.1
10.244.1.0      10.244.1.0      255.255.255.0   UG    0      0        0 flannel.1
10.244.2.0      0.0.0.0         255.255.255.0   U     0      0        0 cni0
192.168.80.0    0.0.0.0         255.255.255.0   U     0      0        0 ens33

$ brctl show
bridge name     bridge id               STP enabled     interfaces
cni0            8000.e2ee89678398       no              veth28b04daf
                                                        vethe6d4a6b8

cni0: 网桥设备,每创建一个pod都会创建一对 veth pair。其中一段是pod中的eth0,另一端是cni0网桥中的端口。

flannel.1: vxlan网关设备,用户 vxlan 报文的解包和封包。不同的 pod 数据流量都从overlay设备以隧道的形式发送到对端。flannel.1不会发送arp请求去获取目标IP的mac地址,而是由Linux kernel将一个"L3 Miss"事件请求发送到用户空间的flanneld程序,flanneld程序收到内核的请求事件后,从etcd中查找能够匹配该地址的子网flannel.1设备的mac地址,即目标pod所在host中flannel.1设备的mac地址。

flanneld: 在每个主机中运行flanneld作为agent,它会为所在主机从集群的网络地址空间中,获取一个小的网段subnet,本主机内所有容器的IP地址都将从中分配。同时Flanneld监听K8s集群数据库,为flannel.1设备提供封装数据时必要的mac,ip等网络数据信息。

VXLAN:Virtual eXtensible Local Area Network,虚拟扩展局域网。采用L2 over L4(MAC-in-UDP)的报文封装模式,将二层报文用三层协议进行封装,实现二层网络在三层范围内进行扩展,同时满足数据中心大二层虚拟迁移和多租户的需求。

flannel只使用了vxlan的部分功能,VNI被固定为1。容器跨网络通信解决方案:如果集群的主机在同一个子网内,则通过路由转发过去;若不在一个子网内,就通过隧道转发过去。

2.3 相关配置

img

$ cat /etc/cni/net.d/10-flannel.conflist
{
  "name": "cbr0",
  "cniVersion": "0.3.1",
  "plugins": [
    {
      "type": "flannel",
      "delegate": {
        "hairpinMode": true,
        "isDefaultGateway": true
      }
    },
    {
      "type": "portmap",
      "capabilities": {
        "portMappings": true
      }
    }
  ]
}

$ cat /run/flannel/subnet.env
FLANNEL_NETWORK=10.244.0.0/16
FLANNEL_SUBNET=10.244.0.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=true

# Bridge CNI 插件
$ cat /var/lib/cni/flannel/462cf658ef71d558b36884dfb6d068e100a3209d36ba2602ad04dd9445e63684 | python3 -m json.tool
{
    "cniVersion": "0.3.1",
    "hairpinMode": true,
    "ipMasq": false,
    "ipam": {
        "routes": [
            {
                "dst": "10.244.0.0/16"
            }
        ],
        "subnet": "10.244.2.0/24",
        "type": "host-local"
    },
    "isDefaultGateway": true,
    "isGateway": true,
    "mtu": 1450,
    "name": "cbr0",
    "type": "bridge"
}

2.4 卸载

# 主节点
kubectl delete -f kube-flannel.yml

# 所有节点上
ip link set cni0 down
ip link set flannel.1 down

ip link delete cni0
ip link delete flannel.1

rm -rf /var/lib/cni/
rm -f /etc/cni/net.d/*

3. Host-GW 模式

3.1 通信流程

img

host-gw采用纯静态路由的方式,要求所有宿主机都在一个局域网内,跨局域网无法进行路由。如果需要进行跨局域网路由,需要在其他设备上添加路由,但已超出flannel的能力范围。可选择calico等使用动态路由技术,通过广播路由的方式将本机路由公告出去,从而实现跨局域网路由学习。

所有的子网和主机的信息,都保存在Etcd中,flanneld只需要watch这些数据的变化 ,实时更新路由表。
核心:IP包在封装成桢的时候,使用路由表的“下一跳”设置上的MAC地址,这样可以经过二层网络到达目的宿主机。

3.2 部署

$ vi kube-flannel.yml
      "Backend": {
        "Type": "host-gw"
      }

$ kubectl apply -f kube-flannel.yml

$ kubectl get pod -n kube-system
NAMESPACE     NAME                    READY   STATUS    RESTARTS   AGE
kube-system   kube-flannel-ds-l2dg7   1/1     Running   0          7s
kube-system   kube-flannel-ds-tj2vg   1/1     Running   0          7s
kube-system   kube-flannel-ds-xxhfm   1/1     Running   0          7s

集群节点上网络分配:

$ ip addr
7: cni0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 2a:00:05:23:3f:5e brd ff:ff:ff:ff:ff:ff
    inet 10.244.2.1/24 brd 10.244.2.255 scope global cni0
       valid_lft forever preferred_lft forever
    inet6 fe80::2800:5ff:fe23:3f5e/64 scope link
       valid_lft forever preferred_lft forever

$ kubectl logs kube-flannel-ds-l2dg7 -n kube-system
I1227 12:09:56.991787       1 route_network.go:86] Subnet added: 10.244.2.0/24 via 192.168.80.240
I1227 12:09:56.992305       1 route_network.go:86] Subnet added: 10.244.0.0/24 via 192.168.80.241

$ route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.80.2    0.0.0.0         UG    0      0        0 ens33
10.244.0.0      192.168.80.241  255.255.255.0   UG    0      0        0 ens33
10.244.1.0      192.168.80.242  255.255.255.0   UG    0      0        0 ens33
10.244.2.0      0.0.0.0         255.255.255.0   U     0      0        0 cni0
192.168.80.0    0.0.0.0         255.255.255.0   U     0      0        0 ens33

3.3 相关配置

$ cat /etc/cni/net.d/10-flannel.conflist
{
  "name": "cbr0",
  "cniVersion": "0.3.1",
  "plugins": [
    {
      "type": "flannel",
      "delegate": {
        "hairpinMode": true,
        "isDefaultGateway": true
      }
    },
    {
      "type": "portmap",
      "capabilities": {
        "portMappings": true
      }
    }
  ]
}

$ cat /run/flannel/subnet.env
FLANNEL_NETWORK=10.244.0.0/16
FLANNEL_SUBNET=10.244.0.1/24
FLANNEL_MTU=1500  # 路由方式下,MTU值使用默认值
FLANNEL_IPMASQ=true

# Bridge CNI 插件
$ cat /var/lib/cni/flannel/46c76c1d50d61494d6d95e0171667ec705bbcdcaeeafa859e25ac4749979bd76 | python3 -m json.tool
{
    "cniVersion": "0.3.1",
    "hairpinMode": true,
    "ipMasq": false,
    "ipam": {
        "ranges": [
            [
                {
                    "subnet": "10.244.2.0/24"
                }
            ]
        ],
        "routes": [
            {
                "dst": "10.244.0.0/16"
            }
        ],
        "type": "host-local"
    },
    "isDefaultGateway": true,
    "isGateway": true,
    "mtu": 1500,
    "name": "cbr0",
    "type": "bridge"
}

3.4 卸载

# 主节点
kubectl delete -f kube-flannel.yml

# 所有节点上
ip link set cni0 down
ip link delete cni0

rm -rf /var/lib/cni/
rm -f /etc/cni/net.d/*

4. 总结

4.1 Flanneld 作用

Flanneld 收到 EventAdded 事件后,从 etcd 将其他主机上报的各种信息,在本机上进行配置,主要分下列三种信息:

  • ARP: IP和MAC的对应关系,三层转发
  • FDB: MAC+VLAN和PORT的对应关系,二层转发,即使两个设备不在同一网段或者没配置IP,只要两者之间的链路层是连通的,就可以通过FDB表进行数据转发。它作用就在于告诉设备从某个端口出去就可以到某个目的MAC
  • Routing Table: 通往目标地址的封包,通过网关方式发送出去

4.2 模式对比

  • udp模式:使用设备flannel.0进行封包解包,不是内核原生支持,上下文切换较大,性能非常差
  • vxlan模式:使用flannel.1进行封包解包,内核原生支持,性能损失在20%~30%左右
  • host-gw模式:无需flannel.1这样的中间设备,直接宿主机当作子网的下一跳地址,性能损失大约在10%左右

5. 故障分析

5.1 kube-proxy 配置错误

1. 现象:

root@k8s-master:~# kubectl get pod -A -o wide -l app=flannel
NAMESPACE     NAME                    READY   STATUS             RESTARTS   AGE     IP              NODE         NOMINATED NODE   READINESS GATES
kube-system   kube-flannel-ds-5whpv   0/1     CrashLoopBackOff   5          6m53s   192.168.3.114   k8s-node01   <none>           <none>
kube-system   kube-flannel-ds-l7msr   1/1     Running            2          16d     192.168.3.113   k8s-master   <none>           <none>
kube-system   kube-flannel-ds-rvvhv   0/1     CrashLoopBackOff   10         33m     192.168.3.115   k8s-node02   <none>           <none>
root@k8s-master:~# kubectl logs  kube-flannel-ds-5whpv -n kube-system
I0211 02:04:21.358127       1 main.go:520] Determining IP address of default interface
I0211 02:04:21.359211       1 main.go:533] Using interface with name enp1s0 and address 192.168.3.118
I0211 02:04:21.359295       1 main.go:550] Defaulting external address to interface address (192.168.3.118)
W0211 02:04:21.359364       1 client_config.go:608] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
E0211 02:04:51.456912       1 main.go:251] Failed to create SubnetManager: error retrieving pod spec for 'kube-system/kube-flannel-ds-5whpv': Get "https://10.96.0.1:443/api/v1/namespaces/kube-system/pods/kube-flannel-ds-5whpv": dial tcp 10.96.0.1:443: i/o timeout
root@k8s-master:~# kubectl get svc
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   16d

2. 排查节点 k8s-node01:

root@k8s-node01:~# ip addr show kube-ipvs0
5: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
    link/ether a6:99:85:4e:ba:35 brd ff:ff:ff:ff:ff:ff
	inet 10.96.0.1/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever

# 本地节点无法连接到kube-apiserver, 说明是kube-proxy 故障
root@k8s-node01:~# telnet 10.96.0.1 443
Trying 10.96.0.1...
telnet: Unable to connect to remote host: Connection timed out

# 检查 kube-proxy 日志,发现其配置有问题
root@k8s-node01:/var/log/kubernetes# vi kube-proxy.ERROR
...
E0211 09:13:56.135807    1842 node.go:161] Failed to retrieve node info: Get "https://192.168.3.113:6443/api/v1/nodes/k8s-node01": dial tcp 192.168.3.113:6443: connect: connection refused

root@k8s-node01:/var/log/kubernetes# vi kube-proxy.WARNING
...
: v1alpha1.KubeProxyConfiguration.IPTables: v1alpha1.KubeProxyIPTablesConfiguration.MasqueradeBit: ReadObject: found unknown field: masqueradeAl, error found in #10 byte of ...|queradeAl":"","masqu|..., bigger context ...|eOverride":"k8s-node01","iptables":{"masqueradeAl":"","masqueradeBit":14,"minSyncPeriod":"5s","syncP|...

# 修改 Kube-proxy 配置
vi /etc/kubernetes/kube-proxy-config.yml
...
iptables:
  masqueradeAll: true

# 重启 Kube-proxy
root@k8s-node01:/var/log/kubernetes# systemctl restart kube-proxy

# 再次检查,已正常
root@k8s-node01:/var/log/kubernetes# vi kube-proxy.INFO
...
I0211 10:25:30.297232    2754 service.go:421] Adding new service port "default/kubernetes:https" at 10.96.0.1:443/TCP
...
I0211 10:32:52.626926    3155 proxier.go:1034] Not syncing ipvs rules until Services and Endpoints have been received from master

# 重启flannel
root@k8s-master:~# kubectl delete pod kube-flannel-ds-5whpv -n kube-system
root@k8s-master:~# kubectl get pod -A -o wide -l app=flannel
NAMESPACE     NAME                    READY   STATUS             RESTARTS   AGE     IP              NODE         NOMINATED NODE   READINESS GATES
kube-system   kube-flannel-ds-lld4b   0/1     Running            0          6m53s   192.168.3.114   k8s-node01   <none>           <none>
kube-system   kube-flannel-ds-l7msr   1/1     Running            2          16d     192.168.3.113   k8s-master   <none>           <none>
kube-system   kube-flannel-ds-rvvhv   0/1     CrashLoopBackOff   10         33m     192.168.3.115   k8s-node02   <none>           <none>

# 确认OK
root@k8s-node01:/var/log/kubernetes# vi kube-proxy.INFO
I0211 02:36:07.555531       1 main.go:520] Determining IP address of default interface
I0211 02:36:07.556543       1 main.go:533] Using interface with name enp1s0 and address 192.168.3.118
I0211 02:36:07.556615       1 main.go:550] Defaulting external address to interface address (192.168.3.118)
W0211 02:36:07.556688       1 client_config.go:608] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0211 02:36:08.057730       1 kube.go:116] Waiting 10m0s for node controller to sync
I0211 02:36:08.057858       1 kube.go:299] Starting kube subnet manager
I0211 02:36:09.058115       1 kube.go:123] Node controller sync successful
I0211 02:36:09.058511       1 main.go:254] Created subnet manager: Kubernetes Subnet Manager - k8s-node01
I0211 02:36:09.058524       1 main.go:257] Installing signal handlers
I0211 02:36:09.152670       1 main.go:392] Found network config - Backend type: host-gw
I0211 02:36:09.254550       1 main.go:357] Current network or subnet (10.244.0.0/16, 10.244.0.0/24) is not equal to previous one (0.0.0.0/0, 0.0.0.0/0), trying to recycle old iptables rules
I0211 02:36:09.853007       1 iptables.go:172] Deleting iptables rule: -s 0.0.0.0/0 -d 0.0.0.0/0 -j RETURN
I0211 02:36:09.858096       1 iptables.go:172] Deleting iptables rule: -s 0.0.0.0/0 ! -d 224.0.0.0/4 -j MASQUERADE --random-fully
I0211 02:36:09.952777       1 iptables.go:172] Deleting iptables rule: ! -s 0.0.0.0/0 -d 0.0.0.0/0 -j RETURN
I0211 02:36:09.955497       1 iptables.go:172] Deleting iptables rule: ! -s 0.0.0.0/0 -d 0.0.0.0/0 -j MASQUERADE --random-fully
I0211 02:36:09.962242       1 main.go:307] Setting up masking rules
I0211 02:36:09.964711       1 main.go:315] Changing default FORWARD chain policy to ACCEPT
I0211 02:36:09.965035       1 main.go:323] Wrote subnet file to /run/flannel/subnet.env
I0211 02:36:09.965050       1 main.go:327] Running backend.
I0211 02:36:09.965069       1 main.go:345] Waiting for all goroutines to exit
I0211 02:36:09.965099       1 route_network.go:53] Watching for new subnet leases
I0211 02:36:09.965579       1 route_network.go:86] Subnet added: 10.244.2.0/24 via 192.168.3.117
I0211 02:36:09.966182       1 route_network.go:86] Subnet added: 10.244.1.0/24 via 192.168.3.119
I0211 02:36:10.152723       1 iptables.go:148] Some iptables rules are missing; deleting and recreating rules
I0211 02:36:10.152782       1 iptables.go:172] Deleting iptables rule: -s 10.244.0.0/16 -d 10.244.0.0/16 -j RETURN
I0211 02:36:10.153844       1 iptables.go:148] Some iptables rules are missing; deleting and recreating rules
I0211 02:36:10.153886       1 iptables.go:172] Deleting iptables rule: -s 10.244.0.0/16 -j ACCEPT
I0211 02:36:10.155194       1 iptables.go:172] Deleting iptables rule: -s 10.244.0.0/16 ! -d 224.0.0.0/4 -j MASQUERADE --random-fully
I0211 02:36:10.156970       1 iptables.go:172] Deleting iptables rule: -d 10.244.0.0/16 -j ACCEPT
I0211 02:36:10.252675       1 iptables.go:172] Deleting iptables rule: ! -s 10.244.0.0/16 -d 10.244.0.0/24 -j RETURN
I0211 02:36:10.255063       1 iptables.go:160] Adding iptables rule: -s 10.244.0.0/16 -j ACCEPT
I0211 02:36:10.255399       1 iptables.go:172] Deleting iptables rule: ! -s 10.244.0.0/16 -d 10.244.0.0/16 -j MASQUERADE --random-fully
I0211 02:36:10.353644       1 iptables.go:160] Adding iptables rule: -s 10.244.0.0/16 -d 10.244.0.0/16 -j RETURN
I0211 02:36:10.452443       1 iptables.go:160] Adding iptables rule: -d 10.244.0.0/16 -j ACCEPT
I0211 02:36:10.456201       1 iptables.go:160] Adding iptables rule: -s 10.244.0.0/16 ! -d 224.0.0.0/4 -j MASQUERADE --random-fully
I0211 02:36:10.555203       1 iptables.go:160] Adding iptables rule: ! -s 10.244.0.0/16 -d 10.244.0.0/24 -j RETURN
I0211 02:36:10.655121       1 iptables.go:160] Adding iptables rule: ! -s 10.244.0.0/16 -d 10.244.0.0/16 -j MASQUERADE --random-fully

5.2 ipvs 模式下,路由表错误

# 无法访问 kube-apiserver
$ kubectl logs -f kube-flannel-ds-ntwh4 -n kube-system
I1108 10:48:00.864770       1 main.go:520] Determining IP address of default interface
I1108 10:48:00.865795       1 main.go:533] Using interface with name ens33 and address 192.168.80.241
I1108 10:48:00.865827       1 main.go:550] Defaulting external address to interface address (192.168.80.241)
W1108 10:48:00.865861       1 client_config.go:608] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
E1108 10:48:30.960762       1 main.go:251] Failed to create SubnetManager: error retrieving pod spec for 'kube-system/kube-flannel-ds-ntwh4': Get "https://10.96.0.1:443/api/v1/namespaces/kube-system/pods/kube-flannel-ds-ntwh4": dial tcp 10.96.0.1:443: i/o timeout

# 切换到相关主机,测试网络,无法连通
$ curl 10.96.0.1:443

# 查询网络
$ ip addr
3: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
    link/ether c6:14:f7:ad:b6:c8 brd ff:ff:ff:ff:ff:ff
    inet 10.96.92.170/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
    inet 10.96.0.1/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
       
# 尝试删除 ip, 发现删除后,自动生成;进一步发现,该设备默认down,设置IP地址,不影响通信
$ ip addr delete 10.96.0.1/32 dev kube-ipvs0

# 查询路由表,发现路由表错误
$ ip route show table local
local 10.96.0.1 dev kube-ipvs0 proto kernel scope host src 10.96.0.1

# 删除路由表
$ ip route del table local local 10.96.0.1 dev kube-ipvs0 proto kernel scope host src 10.96.0.1
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

K8S Flannel 的相关文章

  • K8s基础10——数据卷、PV和PVC、StorageClass动态补给、StatefulSet控制器

    文章目录 一 数据卷类型 1 1 临时数据卷 节点挂载 1 2 节点数据卷 节点挂载 1 3 网络数据卷NFS 1 3 1 效果测试 1 4 持久数据卷 PVC PV 1 4 1 效果测试 1 4 2 测试结论 二 PV PVC生命周期 2
  • CNI Plugin 介绍

    CNI 插件包括两种类型 CNI Plugin 和 IPAM IP Address Management Plugin CNI Plugin 负责为容器配置网络资源 IPAM Plugin 负责对容器的 IP 地址进行分配和管理 IPAM
  • K8S 工作负载(一)

    K8S 工作负载 1 Pod Pod 是 Kubernetes 中创建 管理和调度的最小计算单元 用户可以在 K8S 中通过调用 Pod API生成一个 Pod 让 K8S 对其进行调度 Pod 是一组 一个或多个 容器 这些容器共享存储
  • 从Docker到Kubernetes——Kubernetes设计解读之Pod

    文章目录 Kubernetes是个什么样的项目 Kubernetes的设计解读 典型案例 GuestBook pod设计解读 pod使用实例 pod内容器网络与通信 Kubernetes是个什么样的项目 简单的说 k8s是一个管理跨主机容器
  • k8s v1.16设置Job ttlSecondsAfterFinished不生效

    目录 Completed的job默认不会清理 配置自动清理job ttl机制自动清理完成的job ttl controller 开启 TTLAfterFinished kube apiserver开启TTLAfterFinished kub
  • k8s部署springboot

    前言 首先以SpringBoot应用为例介绍一下k8s的部署步骤 1 从代码仓库下载代码 比如GitLab 2 接着是进行打包 比如使用Maven 3 编写Dockerfile文件 把步骤2产生的包制作成镜像 4 上传步骤3的镜像到远程仓库
  • kubernetes08(kubernetes的资源对象)

    文章目录 kubernetes08 kubernetes的资源对象 一 引子 二 kubernetes资源 一 kubernetes的资源对象作用 二 kubernetes的资源对象分类 三 kubernetes资源清单 一 kubenet
  • 单机版kubernetes

    Kubernetes 集群的搭建是有一定难度的 官方安装推荐了MiniKube作为单机调试 学习 1 centos安装 1 1 先决条件 安装VirtualBox KVM Note Minikube 也支持 vm driver none 选
  • docker下mysql镜像初始化

    目录 1 介绍 2 部署及验证 2 1 场景复现 2 2 创建dockerfile 2 3 初始化脚本 2 4 构建镜像并查看 2 5 创建容器并验证 2 6 完成 1 介绍 原理 当Mysql容器首次启动时 会在 docker entry
  • k8s部署之ETCD集群

    k8s部署之ETCD集群 1 etcd下载 etcd下载地址 https github com coreos etcd releases 从github etcd的发布页面选取相应的版本用 wget url 来下载 如 wget https
  • kube-flannel.yml

    flannel作为k8s的集群中常用的网络组件 其yml文件的获取 建议去github中获取 具体的获取方式如下 apiVersion policy v1beta1 kind PodSecurityPolicy metadata name
  • CentOS 7 下 minikube 部署 && 配置

    CentOS 7 下 minikube 部署 配置 文章目录 CentOS 7 下 minikube 部署 配置 下载 安装 下载安装脚本 安装 minikube 启动 minikube 环境 安装 kubectl 工具 启动 miniku
  • k8s基本命令

    k8s命令 https kubernetes io zh docs tutorials kubernetes basics 官网地址 基本命令 查看节点服务器 kubectl get nodes 查看命名空间 kubectl get ns
  • kubeadm构建(Calico+Dashboard+Containerd)

    文章目录 前言 一 环境 二 部署容器网络 CNI master操作 1 下载yamll 2 修改yaml 3 部署 三 部署 Dashboard 1 下载yaml 2 修改yaml 3 部署 4 创建管理员 四 切换容器引擎为Contai
  • Kubernetes 集群部署 ------ 二进制部署(二)

    单节点 https blog csdn net Yplayer001 article details 104234807 先具备单master1节点部署环境 三 master02部署 优先关闭防火墙和selinux服务 在master01上
  • Rancher 图形化管理K8S

    题外话 之前我们一直都是使用命令行来管理K8S的 这种做法虽然对程序员来说看起来很炫酷 但有时候用起来还是挺麻烦的 今天我们来介绍一个K8S可视化管理工具Rancher 使用它可以大大减少我们管理K8S的工作量 希望对大家有所帮助 简介 R
  • k8s-node节点未找到flannel网络

    k8s node节点的flannel的IP地址不正确 问题描述 问题分析 1 检查node节点的cni和flannel网卡地址 2 检查master节点的flannel服务 如何重置flannel网络 1 删除node节点 master 2
  • k8s基础5——Pod常用命令、资源共享机制、重启策略和健康检查、环境变量、初始化容器、静态pod

    文章目录 一 基本了解 二 管理命令 三 yaml文件参数大全 四 创建pod的工作流程 五 资源共享机制 5 1 共享网络 5 2 共享存储 六 生命周期 重启策略 健康检查 七 环境变量 八 Init Containe初始化容器 九 静
  • k8s问题 CrashLoopBackOff

    我们创建资源发现资源出现CrashLoopBackOff解决 CrashLoopBackOff 告诉我们 Kubernetes 正在尽力启动这个 Pod 但是一个或多个容器已经挂了 或者正被删除 root localhost kubectl
  • flannel和calico区别

    k8s网络模式 Flannel数据包在主机间转发是由backend实现的 目前已经支持UDP VxLAN host gw等多种模式 VxLAN 使用内核中的VxLAN模块进行封装报文 也是flannel推荐的方式 host gw虽然VXLA

随机推荐

  • 第一次写博客-C/C++软件开发工程师需要学习哪些东西?

    学习路线概述 概述数据结构和算法操作系统计算机网络数据库设计模式 概述 作为一名本科机械电子 xff0c 研究生研究计算机视觉方向的211应届毕业生 xff0c 如何才能从事C C 43 43 软件开发类的工程师呢 xff1f 如果能有机会
  • Vue中使用v-for不能用index作为key值

    今天在改一个项目 xff0c 有一个 lt el tabs gt 的列表循环 xff0c 需要根据权限控制列表项的显示 xff0c 代码如下 xff1a span class token operator lt span template
  • java 冒泡排序 选择排序 插入排序及其异同点

    交换两坐标位置的swap 函数 之后要用到 span class token keyword public span span class token keyword static span span class token keyword
  • 自抗扰(ADRC)控制原理及控制器设计

    自抗扰控制是在PID控制算法基础上进行改进的新型控制方法 xff0c 它具有不依赖于控制对象模型 不区分系统内外扰的结构特点 常用的自抗扰控制器主要由跟踪微分器 xff08 Tracking Differentiator xff0c TD
  • LQR控制基本原理(包括Riccati方程具体推导过程)

    全状态反馈控制系统 状态反馈控制器 通过选择K xff0c 可以改变的特征值 xff0c 进而控制系统表现 LQR控制器 最优控制 xff0c 其本质就是让系统以某种最小的代价来让系统运行 xff0c 当这个代价被定义为二次泛函 xff0c
  • 运行VINS-Fusion时找不到vins_node节点的问题解决

    问题 xff1a 在执行 rosrun vins vins node span class token operator span span class token operator span catkin ws span class to
  • Faster RCNN(Pytorch版本)代码及理论笔记

    文章目录 前言一 Faster RCNN整体流程二 PASCAL VOC2012数据集1 简介2 下载方式3 文件结构及含义 三 加载数据集四 数据预处理1 流程2 标准化数据3 缩放4 将图片处理为统一尺寸5 数据预处理的输入输出 五 B
  • K8S 网络CNI

    1 简介 CNI 容器网络接口 Container Network Interface xff1a 由Google和Core OS主导制定的容器网络标准 xff0c 它仅仅是一个接口 xff0c 具体的功能由各个网络插件自己去实现 xff1
  • 二叉树-前-中-后序遍历

    二叉树 二叉树概念 xff1a 1 空树 2 非空 xff1a 根节点 xff0c 根节点的左子树 xff0c 根节点的右子树组成 注意 xff01 注意 xff01 时刻记得二叉树是根 xff0c 根的左子树 xff0c 根的右子树 xf
  • 变量的声明与定义&&内部函数与外部函数

    1 变量的声明与定义 对于函数 声明部分是对有关标识符 xff08 变量 函数 结构体 xff09 的属性进行声明 xff1b 函数的声明是函数的原型 xff0c 而函数的定义是对函数功能的定义 对被调函数的声明是放在主调函数的声明部分 x
  • 《Java面向对象编程(阿里云大学)》笔记(文档+思维导图)

    课程链接 xff1a https edu aliyun com course 1011 xff08 还是建议去看课程 xff0c 笔记仅供参考 由于文中的所有内容均为手敲 xff0c 并且有些代码并未验证 xff0c 因此如有错误 xff0
  • 《JDBC数据库开发进阶(阿里云大学》笔记(文档+思维导图)

    第1章 xff1a 事务处理 课时1 xff1a 事务的四大特性 xff08 ACID xff09 课时2 xff1a MySQL中开启和关闭事务 课时3 xff1a JDBC中完成事务处理 在JDBC中处理事务 xff0c 都是通过Con
  • PyCharm使用教程 --- 7、使用PyCharm进行DeBug调试

    很多新手朋友对PyCharm的使用无从下手 xff0c 于是花费了一点时间整理这份PyCharm操作手册 xff0c 完整PDF下载 xff1a 终于写完了 xff01 PyCharm操作手册 V1 0版本 PDF下载 目录如下 xff1a
  • FreeRTOS中断和任务之间的队列,自定义串口通讯协议

    本文提供这样一种方法 xff1a FreeRTOS中串口接收数据中断 xff0c 然后通过队列将数据传递给任务A xff0c 在任务A中对数据进行处理 xff0c 串口使用的通讯协议为自定义 依次给出了串口的初始化 中断服务函数 任务A x
  • 适用于FreeRTOS初学者,FreeRTOS整体知识框架

    写在前面 xff1a 因为实际使用需求 xff0c 学习了一段时间FreeRTOS 从FreeRTOS的市场占有率来看 xff0c 网上的资料应该很多 xff0c 但是在学习过程中尤其是遇到问题的时候 xff0c 发现真正有用的资料并不多
  • 串口通信float型数据的处理和发送;大端小端;联合体union占用字节大小;结构体的定义

    在介绍float型数据的处理和发送之前 xff0c 先介绍一下大端和小端以及联合体的大小分析 一 什么是大端小端 xff1f 如何测试你的CPU是大端还是小端 xff1f 1 大端小端 xff1a 小端 xff1a 采用小端模式的CPU对操
  • Python中以下划线开头的标识符

    1 以单下划线开头的变量 例如 foo代表禁止外部访问的类成员 xff0c 需通过类提供的接口进行访问 xff0c 不能用 34 from xxx import 34 导入 2 以双下划线开头的变量 例如 foo xff0c 代表类的私有成
  • 【CentOS 7】命令行安装GNOME、KDE图形界面(转载)

    目录 正文 一 进入 root 模式 二 安装 X 窗口系统 三 安装图形界面软件 GNOME 四 更新系统的默认运行级别 正文 CentOS 7 默认是没有图形化界面的 xff0c 但我们很多人在习惯了 Windows 的图形化界面之后
  • Git子模块使用教程

    Git子模块 1 问题背景 随着产品的日益增多 xff0c 各个产品之间的业务功能会出现高度的相同性 xff0c 比如产品A有串口的接收功能 xff0c 产品B也有相同的串口功能 xff0c 这类功能我们可以写成一个通用的串口接收模块 这样
  • K8S Flannel

    1 简介 Flannel 由CoreOS开发 xff0c 用于解决docker集群跨主机通讯的覆盖网络 overlay network xff0c 它的主要思路是 xff1a 预先留出一个网段 xff0c 每个主机使用其中一部分 xff0c