基于tensorflow2.0+使用bert获取中文词、句向量并进行相似度分析

2023-11-19

本文基于transformers库,调用bert模型,对中文、英文的稠密向量进行探究

开始之前还是要说下废话,主要是想吐槽下,为啥写这个东西呢?因为我找了很多文章要么不是不清晰,要么就是基于pytorch,所以特地写了这篇基于tensorflow2.0+的

运行环境

这个环境没有严格要求,仅供参考
win10 + python 3.8 + tensorflow 2.9.1 + transformers 4.20.1

导入库

from transformers import AutoTokenizer, TFAutoModel
import tensorflow as tf
import matplotlib.pyplot as plt

加载模型

model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModel.from_pretrained(model_name,
                                    output_hidden_states=True)  # 是否返回bert所有隐藏层的稠密向量

输入测试句子

utt = ['今天的月亮又大又圆', '月亮真的好漂亮啊', '今天去看电影吧', "爱情睡醒了,天琪抱着小贝进酒店", "侠客行风万里"]
inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
outputs = model(inputs)
hidden_states = outputs[2]  # 获得各个隐藏层输出

解释下输出(hidden_states):

  1. The layer number (13 layers)
  2. The batch number (5 sentence) 也就是输入句子的个数
  3. The word / token number (64 tokens in our sentence) 也就是max_length
  4. The hidden unit / feature number (768 features)

疑惑点:
1.为啥是13层?bert不是12层吗?
第一层是输入的嵌入层,其余12层才是bert的

打印出出看下shape:

print("Number of layers:", len(hidden_states), "  (initial embeddings + 12 BERT layers)")
# Number of layers: 13   (initial embeddings + 12 BERT layers)

layer_i = 0
print("Number of batches:", len(hidden_states[layer_i]))
# umber of batches: 5

batch_i = 0
print("Number of tokens:", len(hidden_states[layer_i][batch_i]))
# Number of tokens: 64

token_i = 0
print("Number of hidden units:", len(hidden_states[layer_i][batch_i][token_i]))
# Number of hidden units: 768

查看下第一个句子第五个词在第五层的表示

batch_i = 0
token_i = 5
layer_i = 5
vec = hidden_states[layer_i][batch_i][token_i]

嗯,看下分布吧

plt.figure(figsize=(10, 10))
plt.hist(vec, bins=200)
plt.show()

请添加图片描述

现在多个句子的张量做一些改动

因为hidden_states是元组,所以现在要把他的维度嵌入到张量中

sentence_embeddings = tf.stack(hidden_states, axis=0)  # 在维度0的位置插入,也就是把13放入最前面
print(f"sentence_embeddings.shape : {sentence_embeddings.shape}")
# sentence_embeddings.shape : (13, 5, 64, 768)

调换维度,使每个词都有13层的嵌入表示

sentence_embeddings_perm = tf.transpose(sentence_embeddings, perm=[1, 2, 0, 3])
print(f"sentence_embeddings_perm.shape : {sentence_embeddings_perm.shape}")
# sentence_embeddings_perm.shape : (5, 64, 13, 768)

获取词的稠密向量

第一种方式:拼接后四层的稠密向量

for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
    print(f"sentence_embedding.shape: {sentence_embedding.shape}")
    token_vecs_cat = []
    for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
        print(f"token_embedding.shape : {token_embedding.shape}")
        cat_vec = tf.concat([token_embedding[-1], token_embedding[-2], token_embedding[-3], token_embedding[-4]], axis=0)
        print(f"cat_vec.shape : {cat_vec.shape}")
        token_vecs_cat.append(cat_vec)
    print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")

第二种方式:加和后四层的稠密向量

for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
    print(f"sentence_embedding.shape: {sentence_embedding.shape}")
    token_vecs_cat = []
    for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
        print(f"token_embedding.shape : {token_embedding.shape}")
        cat_vec = sum(token_embedding[-4:])
        print(f"cat_vec.shape : {cat_vec.shape}")
        token_vecs_cat.append(cat_vec)
    print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")

获取句子的稠密向量

平均每个token倒数第二层的稠密向量

token_vecs = sentence_embeddings[-2]
print(f"token_vecs.shape : {token_vecs.shape}")
# token_vecs.shape : (5, 64, 768)
sentences_embedding = tf.reduce_mean(token_vecs, axis=1)
print(f"sentences_embedding.shape : {sentences_embedding.shape}")
# sentences_embedding.shape : (5, 768)

相似度探讨

不同句子间的相似度

tensor_test = sentences_embedding[0]
consine_sim_tensor = tf.keras.losses.cosine_similarity(tensor_test, sentences_embedding)
print(f"consine_sim_tensor : {consine_sim_tensor}")
# consine_sim_tensor : [-0.99999994 -0.9915971  -0.9763253  -0.7641263  -0.9695324 ]

探讨下相同词bank在不同上下文时其vector的相似度

utt = ["After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank."]
inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=22)
"""
0 [CLS]
1 after
2 stealing
3 money
4 from
5 the
6 bank
7 vault
8 ,
9 the
10 bank
11 robber
12 was
13 seen
14 fishing
15 on
16 the
17 mississippi
18 river
19 bank
20 .
21 [SEP]

bank单词的位置分别在6, 10, 19
"""
outputs = model(inputs)
hidden_states = outputs[2]  # 获得各个隐藏层输出
tokens_embedding = tf.reduce_sum(hidden_states[-4:], axis=0) # 使用加和方式
bank_vault = tokens_embedding[0][6]
bank_robber = tokens_embedding[0][10]
river_bank = tokens_embedding[0][19]
consine_sim_tensor = tf.keras.losses.cosine_similarity(bank_vault, [bank_robber, river_bank])
print(f"consine_sim_tensor : {consine_sim_tensor}")
# consine_sim_tensor : [-0.93863535 -0.69570863]

可以看出**bank_vault(银行金库)和bank_robber(银行抢劫犯)**中的bank相似度更高些,合理!

完整代码

from transformers import AutoTokenizer, TFAutoModel
import tensorflow as tf
import matplotlib.pyplot as plt

# 加载模型
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModel.from_pretrained(model_name,
                                    output_hidden_states=True)  # Whether the model returns all hidden-states.

# 输入测试句子
utt = ['今天的月亮又大又圆', '月亮真的好漂亮啊', '今天去看电影吧', "爱情睡醒了,天琪抱着小贝进酒店", "侠客行风万里"]
inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
outputs = model(inputs)
hidden_states = outputs[2]  # 获得各个隐藏层输出
"""
解释下输出(hidden_states):
1. The layer number (13 layers)
2. The batch number (5 sentence) 也就是输入句子的个数
3. The word / token number (64 tokens in our sentence) 也就是max_length
4. The hidden unit / feature number (768 features)

疑惑点:
1.为啥是13层?bert不是12层吗?
第一层是输入的嵌入层,其余12层才是bert的
"""
print("Number of layers:", len(hidden_states), "  (initial embeddings + 12 BERT layers)")

layer_i = 0
print("Number of batches:", len(hidden_states[layer_i]))

batch_i = 0
print("Number of tokens:", len(hidden_states[layer_i][batch_i]))

token_i = 0
print("Number of hidden units:", len(hidden_states[layer_i][batch_i][token_i]))

# For the 5th token in our sentence, select its feature values from layer 5.
token_i = 5
layer_i = 5
vec = hidden_states[layer_i][batch_i][token_i]

# Plot the values as a histogram to show their distribution.
plt.figure(figsize=(10, 10))
plt.hist(vec, bins=200)
plt.show()


# Concatenate the tensors for all layers. We use `stack` here to
# create a new dimension in the tensor.
sentence_embeddings = tf.stack(hidden_states, axis=0)  # 在维度0的位置插入,也就是把13放入最前面
print(f"sentence_embeddings.shape : {sentence_embeddings.shape}")

# 调换维度,使每个词都有13层的嵌入表示
sentence_embeddings_perm = tf.transpose(sentence_embeddings, perm=[1, 2, 0, 3])
print(f"sentence_embeddings_perm.shape : {sentence_embeddings_perm.shape}")

# 获取词的稠密向量
## 第一种方式:拼接后四层的稠密向量
for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
    print(f"sentence_embedding.shape: {sentence_embedding.shape}")
    token_vecs_cat = []
    for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
        print(f"token_embedding.shape : {token_embedding.shape}")
        cat_vec = tf.concat([token_embedding[-1], token_embedding[-2], token_embedding[-3], token_embedding[-4]], axis=0)
        print(f"cat_vec.shape : {cat_vec.shape}")
        token_vecs_cat.append(cat_vec)
    print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")

## 第二种方式:加和后四层的稠密向量
for sentence_embedding in sentence_embeddings_perm:  # 获取每个句子的embedding
    print(f"sentence_embedding.shape: {sentence_embedding.shape}")
    token_vecs_cat = []
    for token_embedding in sentence_embedding:  # 获取句子每个词的embedding
        print(f"token_embedding.shape : {token_embedding.shape}")
        cat_vec = sum(token_embedding[-4:])
        print(f"cat_vec.shape : {cat_vec.shape}")
        token_vecs_cat.append(cat_vec)
    print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")


# 获取句子的稠密向量
## 平均每个token倒数第二层的稠密向量
token_vecs = sentence_embeddings[-2]
print(f"token_vecs.shape : {token_vecs.shape}")
sentences_embedding = tf.reduce_mean(token_vecs, axis=1)
print(f"sentences_embedding.shape : {sentences_embedding.shape}")


# 计算余弦相似度
## 不同句子间的相似度
tensor_test = sentences_embedding[0]
consine_sim_tensor = tf.keras.losses.cosine_similarity(tensor_test, sentences_embedding)
print(f"consine_sim_tensor : {consine_sim_tensor}")


##探讨下相同词bank在不同上下文时其vector的相似度
utt = ["After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank."]
inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=22)
"""
0 [CLS]
1 after
2 stealing
3 money
4 from
5 the
6 bank
7 vault
8 ,
9 the
10 bank
11 robber
12 was
13 seen
14 fishing
15 on
16 the
17 mississippi
18 river
19 bank
20 .
21 [SEP]

bank单词的位置分别在6, 10, 19
"""
outputs = model(inputs)
hidden_states = outputs[2]  # 获得各个隐藏层输出
tokens_embedding = tf.reduce_sum(hidden_states[-4:], axis=0) # 使用加和方式
bank_vault = tokens_embedding[0][6]
bank_robber = tokens_embedding[0][10]
river_bank = tokens_embedding[0][19]
consine_sim_tensor = tf.keras.losses.cosine_similarity(bank_vault, [bank_robber, river_bank])
print(f"consine_sim_tensor : {consine_sim_tensor}")
# consine_sim_tensor : [-0.93863535 -0.69570863]
# 可以看出bank_vault(银行金库)和bank_robber(银行抢劫犯)中的bank相似度更高些,合理!
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

基于tensorflow2.0+使用bert获取中文词、句向量并进行相似度分析 的相关文章

  • 如何在刻度标签和轴之间添加空间

    我已成功增加刻度标签的字体 但现在它们距离轴太近了 我想在刻度标签和轴之间添加一点呼吸空间 如果您不想全局更改间距 通过编辑 rcParams 并且想要更简洁的方法 请尝试以下操作 ax tick params axis both whic
  • Python、Tkinter、更改标签颜色

    有没有一种简单的方法来更改按钮中文本的颜色 I use button text input text here 更改按下后按钮文本的内容 是否存在类似的颜色变化 button color red Use the foreground设置按钮
  • 更改自动插入 tkinter 小部件的文本颜色

    我有一个文本框小部件 其中插入了三条消息 一条是开始消息 一条是结束消息 一条是在 单位 被摧毁时发出警报的消息 我希望开始和结束消息是黑色的 但被毁坏的消息 参见我在代码中评论的位置 插入小部件时颜色为红色 我不太确定如何去做这件事 我看
  • Python 多处理示例不起作用

    我正在尝试学习如何使用multiprocessing但我无法让它发挥作用 这是代码文档 http docs python org 2 library multiprocessing html from multiprocessing imp
  • 如何在Windows上模拟socket.socketpair

    标准Python函数套接字 套接字对 https docs python org 3 library socket html socket socketpair不幸的是 它在 Windows 上不可用 从 Python 3 4 1 开始 我
  • 如何等到 Excel 计算公式后再继续 win32com

    我有一个 win32com Python 脚本 它将多个 Excel 文件合并到电子表格中并将其另存为 PDF 现在的工作原理是输出几乎都是 NAME 因为文件是在计算 Excel 文件内容之前输出的 这可能需要一分钟 如何强制工作簿计算值
  • Python tcl 未正确安装

    我刚刚为 python 安装了graphics py 但是当我尝试运行以下代码时 from graphics import def main win GraphWin My Circle 100 100 c Circle Point 50
  • 在 NumPy 中获取 ndarray 的索引和值

    我有一个 ndarrayA任意维数N 我想创建一个数组B元组 数组或列表 其中第一个N每个元组中的元素是索引 最后一个元素是该索引的值A 例如 A array 1 2 3 4 5 6 Then B 0 0 1 0 1 2 0 2 3 1 0
  • IRichBolt 在storm-1.0.0 和 pyleus-0.3.0 上运行拓扑时出错

    我正在运行风暴拓扑 pyleus verbose local xyz topology jar using storm 1 0 0 pyleus 0 3 0 centos 6 6并得到错误 线程 main java lang NoClass
  • 交换keras中的张量轴

    我想将图像批次的张量轴从 batch size row col ch 交换为 批次大小 通道 行 列 在 numpy 中 这可以通过以下方式完成 X batch np moveaxis X batch 3 1 我该如何在 Keras 中做到
  • python 集合可以包含的值的数量是否有限制?

    我正在尝试使用 python 设置作为 mysql 表中 ids 的过滤器 python集存储了所有要过滤的id 现在大约有30000个 这个数字会随着时间的推移慢慢增长 我担心python集的最大容量 它可以包含的元素数量有限制吗 您最大
  • 使用 OpenPyXL 迭代工作表和单元格,并使用包含的字符串更新单元格[重复]

    这个问题在这里已经有答案了 我想使用 OpenPyXL 来搜索工作簿 但我遇到了一些问题 希望有人可以帮助解决 以下是一些障碍 待办事项 我的工作表和单元格数量未知 我想搜索工作簿并将工作表名称放入数组中 我想循环遍历每个数组项并搜索包含特
  • Python - 按月对日期进行分组

    这是一个简单的问题 起初我认为很简单而忽略了它 一个小时过去了 我不太确定 所以 我有一个Python列表datetime对象 我想用图表来表示它们 x 值是年份和月份 y 值是此列表中本月发生的日期对象的数量 也许一个例子可以更好地证明这
  • 如何改变Python中特定打印字母的颜色?

    我正在尝试做一个简短的测验 并且想将错误答案显示为红色 欢迎来到我的测验 您想开始吗 是的 祝你好运 法国的首都是哪里 法国 随机答案不正确的答案 我正在尝试将其显示为红色 我的代码是 print Welcome to my Quiz be
  • 通过数据框与函数进行交互

    如果我有这样的日期框架 氮 EG 00 04 NEG 04 08 NEG 08 12 NEG 12 16 NEG 16 20 NEG 20 24 datum von 2017 10 12 21 69 15 36 0 87 1 42 0 76
  • 如何在 Django 中使用并发进程记录到单个文件而不使用独占锁

    给定一个在多个服务器上同时执行的 Django 应用程序 该应用程序如何记录到单个共享日志文件 在网络共享中 而不保持该文件以独占模式永久打开 当您想要利用日志流时 这种情况适用于 Windows Azure 网站上托管的 Django 应
  • Python:计算字典的重复值

    我有一本字典如下 dictA unit1 test1 alpha unit1 test2 beta unit2 test1 alpha unit2 test2 gamma unit3 test1 delta unit3 test2 gamm
  • 从 Python 中的类元信息对 __init__ 函数进行类型提示

    我想做的是复制什么SQLAlchemy确实 以其DeclarativeMeta班级 有了这段代码 from sqlalchemy import Column Integer String from sqlalchemy ext declar
  • 使用基于正则表达式的部分匹配来选择 Pandas 数据帧的子数据帧

    我有一个 Pandas 数据框 它有两列 一列 进程参数 列 包含字符串 另一列 值 列 包含相应的浮点值 我需要过滤出部分匹配列 过程参数 中的一组键的子数据帧 并提取与这些键匹配的数据帧的两列 df pd DataFrame Proce
  • Python:元类属性有时会覆盖类属性?

    下面代码的结果让我感到困惑 class MyClass type property def a self return 1 class MyObject object metaclass MyClass a 2 print MyObject

随机推荐