二叉树知识总结

2023-11-17

一、前言

数组的搜索比较方便,可以直接用下标,但删除和插入就比较麻烦;

链表与之相反,删除和插入元素很快,但查找比较慢;

此时,二叉树应运而生,二叉树既有链表的好处,也有数组的好处,在处理大批量的动态数据时比较好用,是一种折中的选择。

文件系统和数据库系统一般都是采用树(特别是B树)的数据结构数据,主要为排序和检索的效率。

二叉树是一种最基本最典型的排序树,用于教学和研究树的特性,本身很少在实际中进行应用,因为缺点太明显,就像冒泡排序一样,因为效率问题并不实用,但也是我们必须会的。

二、二叉树缺点

1、顺序存储可能会浪费空间(在非完全二叉树的时候),但是读取某个指定的结点的时候效率比较高O(0);

2、链式存储相对于二叉树,浪费空间较少,但是读取某个结点的时候效率偏低O(nlogn)。

满二叉树:

在一颗二叉树中,如果所有分支结点都有左子结点和右子结点,并且叶结点都集中在二叉树的最底层,这样的二叉树称为满二叉树。

完全二叉树:

若二叉树中最多只有最下面两层的结点,而且相差只有1级,并且最下面一层的叶结点都依次排列在该层的最左边位置,则这样的二叉树称为完全二叉树。

三、遍历与结点删除

二叉树是一种非常重要的数据结构,非常多的数据结构都是基于二叉树的基础演变而来的。对于二叉树有深度遍历和广度遍历,深度遍历有前序、中序以及后序三种遍历方法,广度遍历即我们寻常所说的层次遍历。由于树的定义本身就是递归定义,因此采用递归的方法实现树的三种遍历。

对于一段代码来说,可读性有时候要比代码本身的效率要重要的多。

1、四种基本的遍历思想

  • 前序遍历:根结点 -->左子树-->右子树;
  • 中序遍历:左子树 -->根结点-->右子树;
  • 后续遍历:左子树 -->右子树-->根结点;
  • 层次遍历:仅仅需按成次遍历即可;

2、自定义二叉树

3、代码实现

(1)girlNode

package com.guor.tree;

public class GirlNode {

    private int no;
    private String name;
    private GirlNode left; //默认null
    private GirlNode right; //默认null

    //1、如果leftType == 0表示指向的是左子树,如果 leftType == 1则表示指向的是前驱结点
    //2、如果rightType == 0表示指向的是右子树,如果 rightType == 1则表示指向的是后继结点
    private int leftType;
    private int rightType;

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    public GirlNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
    public int getNo() {
        return no;
    }
    public void setNo(int no) {
        this.no = no;
    }
    public String getName() {
        return name;
    }
    public void setName(String name) {
        this.name = name;
    }
    public GirlNode getLeft() {
        return left;
    }
    public void setLeft(GirlNode left) {
        this.left = left;
    }
    public GirlNode getRight() {
        return right;
    }
    public void setRight(GirlNode right) {
        this.right = right;
    }
    @Override
    public String toString() {
        return "GirlNode [no=" + no + ", name=" + name + "]";
    }

    //前序遍历
    public void preOrder() {
        System.out.println(this);//先输出父节点
        //递归向左子树前序遍历
        if(this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null) {
            this.right.preOrder();
        }
    }

    //中序遍历
    public void midOrder() {
        //递归向左子树中序遍历
        if(this.left != null) {
            this.left.midOrder();
        }
        System.out.println(this);//输出父节点
        //递归向右子树前序遍历
        if(this.right != null) {
            this.right.midOrder();
        }
    }

    //后序遍历
    public void postOrder() {
        //递归向左子树后序遍历
        if(this.left != null) {
            this.left.postOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);//输出父节点
    }

    //递归删除结点
    //1.如果删除的节点是叶子节点,则删除该节点
    //2.如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no) {
        //思路
		/*
		 * 	1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
			2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
			3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
			4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
			5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.
		 */
        //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
        if(this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }

        //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
        if(this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }

        //4.我们就需要向左子树进行递归删除
        if(this.left != null) {
            this.left.delNode(no);
        }

        //5.则应当向右子树进行递归删除
        if(this.right != null) {
            this.right.delNode(no);
        }
    }
}

(2)二叉树测试 

package com.guor.tree;
public class BinaryTreeTest {
    public static void main(String[] args) {
        //创建一个二叉树
        BinaryTree binaryTree = new BinaryTree();
        //创建结点
        HeroNode root = new HeroNode(1, "比比东");
        HeroNode node2 = new HeroNode(2, "云韵");
        HeroNode node3 = new HeroNode(3, "美杜莎");
        HeroNode node4 = new HeroNode(4, "纳兰嫣然");
        HeroNode node5 = new HeroNode(5, "雅妃");
        root.setLeft(node2);
        root.setRight(node3);
        node3.setLeft(node4);
        node3.setRight(node5);
        binaryTree.setRoot(root);
        System.out.println("前序遍历");
        binaryTree.preOrder();
        System.out.println("中序遍历");
        binaryTree.midOrder();
        System.out.println("后序遍历");
        binaryTree.postOrder();
        binaryTree.delNode(3);
        System.out.println("删除结点3,前序遍历");
        binaryTree.preOrder();
    }
}

//定义BinaryTree 二叉树
class BinaryTree {
    private HeroNode root;

    public HeroNode getRoot() {
        return root;
    }

    public void setRoot(HeroNode root) {
        this.root = root;
    }
    //前序遍历
    public void preOrder() {
        if(this.root != null) {
            this.root.preOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
    //中序遍历
    public void midOrder() {
        if(this.root != null) {
            this.root.midOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //后序遍历
    public void postOrder() {
        if(this.root != null) {
            this.root.postOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //删除结点
    public void delNode(int no) {
        if(root != null) {
            //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
            if(root.getNo() == no) {
                root = null;
            } else {
                //递归删除
                root.delNode(no);
            }
        }else{
            System.out.println("空树,不能删除~");
        }
    }
}

(3)控制台输出

四、先看一个问题

将数列{1,3,6,8,10,14}构建成一颗二叉树。

问题分析:

  1. 当我们对上面的二叉树进行中序遍历时,数列为{8,3,10,1,6,14}。
  2. 但是6,8,10,14这几个节点的左右指针,并没有完全的利用上。
  3. 如果我们希望充分的利用各个节点的左右指针,让各个节点可以指向自己的前后节点,要怎么办?
  4. 解决方案 --> 线索化二叉树 

五、线索化二叉树

1、n个节点的二叉树链表总含有n+1(公式2n-(n-1)=n+1)个空指针域。利用二叉树表中的空指针域,存放指向该节点在某种遍历次序下的前驱和后继节点的指针(这种附加的指针称为“线索”)

2、这种加上了线索的二叉树称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。

3、一个节点的前一个节点,称为前驱节点

4、一个节点的后一个节点,称为后继节点

说明:当线索化二叉树后,Node节点的属性left和right,有如下情况:

  1. left指向的是左子树,也可能指向的前驱节点,比如①节点left指向的左子树,而⑩节点的left指向的就是前驱节点。
  2. right指向的是右子树,也可能是指向后继节点,比如①节点right指向的是右子树,而⑩节点的right指向的是后继节点。

六、线索化二叉树代码实例

1、线索化二叉树

package com.guor.tree;

//定义ThreadBinaryTree,实现了线索化功能的二叉树
public class ThreadedBinaryTree {
    private HeroNode root;

    //为了实现线索化,需要创建指向当前结点的前驱结点的指针
    //在递归进行线索化时,pre总是保留前一个结点
    private HeroNode pre = null;

    public HeroNode getRoot() {
        return root;
    }

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //重载threadedNodes方法
    public void threadedNodes(){
        this.threadedNodes(root);
    }

    /**
     * 编写对二叉树进行中序线索化的方法
     * @param node 当前需要线索化的结点
     */
    public void threadedNodes(HeroNode node){
        //如果node==null,不能线索化
        if(node == null){
            return;
        }

        //1、先线索化左子树
        threadedNodes(node.getLeft());
        //2、线索化当前结点

        //处理当前结点的前驱结点
        //以8为例来理解
        //8结点的.left = null,8结点的.leftType = 1
        if(node.getLeft() == null){
            //让当前结点的左指针指向前驱结点
            node.setLeft(pre);
            //修改当前结点的左指针的类型,指向前驱结点
            node.setLeftType(1);
        }

        //处理后继结点
        if(pre != null && pre.getRight() == null){
            //让当前结点的右指针指向当前结点
            pre.setRight(node);
            //修改当前结点的右指针的类型=
            pre.setRightType(1);
        }

        //每处理一个结点后,让当前结点是下一个结点的前驱结点
        pre = node;

        //3、线索化右子树
        threadedNodes(node.getRight());
    }

    //前序遍历
    public void preOrder() {
        if(this.root != null) {
            this.root.preOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
    //中序遍历
    public void midOrder() {
        if(this.root != null) {
            this.root.midOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //后序遍历
    public void postOrder() {
        if(this.root != null) {
            this.root.postOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //删除结点
    public void delNode(int no) {
        if(root != null) {
            //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
            if(root.getNo() == no) {
                root = null;
            } else {
                //递归删除
                root.delNode(no);
            }
        }else{
            System.out.println("空树,不能删除~");
        }
    }
}

2、测试

package com.guor.tree;

public class ThreadedBinaryTreeTest {
    public static void main(String[] args) {
        //测试中序线索二叉树的功能
        HeroNode root = new HeroNode(1,"比比东");
        HeroNode node2 = new HeroNode(3,"云韵");
        HeroNode node3 = new HeroNode(6,"纳兰嫣然");
        HeroNode node4 = new HeroNode(8,"雅妃");
        HeroNode node5 = new HeroNode(10,"千仞雪");
        HeroNode node6 = new HeroNode(14,"美杜莎");

        //二叉树,后面我们要递归创建,现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);

        //测试中序线索化
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
        threadedBinaryTree.threadedNodes();

        //以10号节点测试
        HeroNode leftNode = node5.getLeft();
        System.out.println("10号结点的前驱结点是:"+leftNode);//应该是3号

        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的后继结点是:"+rightNode);//应该是1号
    }
}

3、控制台输出

七、遍历线索化二叉树

说明:对前面的中序线索化的二叉树,进行遍历

分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用心得方式遍历线索化二叉树,各个结点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。遍历的次序应当和中序遍历保持一致。

1、代码实例

/**
 * 遍历线索化二叉树的方法
 */
public void threadedList(){
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null){
        //循环找到leftType == 1的结点,第一个找到就是8结点
        //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化处理后的有效结点
        while(node.getLeftType() == 0){
            node = node.getLeft();
        }
        //打印当前结点
        System.out.println(node);
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while(node.getRightType() == 1){
            //获取当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
    }
}

2、控制台输出

八、大顶堆和小顶堆图解说明

1、堆排序基本介绍

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为线性对数阶,它也是不稳定排序。
  2. 堆是具有以下特性的完全二叉树:每个结点的值都大于或等于其左右子结点的值,称为大顶堆,注意:没有要求结点的左子结点值和右子结点值的大小关系。
  3. 每个结点的值都小于或等于其左右子结点的值,称为小顶堆。

2、大顶堆举例说明

我们对堆中的结点按层进行编号,映射到数组中就是下面这一个样子

大顶堆特点:

arr[i]>=ar[2*i+1]&&arr[i]>=arr[2*i+2]//i对应第几个结点,i从0开始编号 

3、小顶堆距离说明

小顶堆特点:

arr[i]<=arr[2*i+1]&&arr[i]<=arr[2*i+2]//i对应第几个结点,i从0开始编号

4、一般升序采用大顶堆,降序采用小顶堆

九、堆排序基本思想

  1. 将待排序序列构成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点
  3. 将其与末尾元素进行交换,此时末尾就为最大值
  4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

九、堆排序思路和步骤解析

1、将无序二叉树调整为大顶堆

(1)原始的数组[4,6,8,5,9]

(2)此时从最后一个非叶子结点开始(第一个非叶子结点arr.length/2-1=5/2-1=1,也就是6结点),从左至右,从上至下进行调整。

(3)再找到第二个非叶子结点,由于[4,9,8]中9最大,所以4和9交换。

4、此时,交换之后导致[4,5,6]结构混乱了,继续调整,交换4和6。

此时,我们就讲一个无序结构的二叉树调整为了一个大顶堆。

2、将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再讲堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

3、重新调整结构,使其继续满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

再将堆顶的8与末尾元素5交换,得到第二大元素8

然后继续进行调整,交换,最后变成:

简单总结一下堆排序的基本思路:

  1. 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
  2. 将堆顶元素与末尾元素交换,将最大元素交换至数组末端;
  3. 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

十、堆排序代码实例

1、堆排序代码

package com.guor.tree;

import java.util.Arrays;

public class HeapSort {
    public static void main(String[] args) {
        //要求将数组进行升序排序
        int arr[] = {4,6,8,5,9};
        heapSort(arr);
    }

    public static void heapSort(int arr[]){
        int temp = 0;
        System.out.println("堆排序。");

        //分步完成
        //adjustHeap(arr,1,arr.length);
        //System.out.println("第一次调整:"+ Arrays.toString(arr));//{4,9,8,5,6}
        //adjustHeap(arr,0,arr.length);
        //System.out.println("第二次调整:"+ Arrays.toString(arr));//{9,6,8,5,4}

        //完成最终代码
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        //arr.length/2-1为叶子结点个数
        for(int i = arr.length/2-1;i>=0;i--){
            adjustHeap(arr, i, arr.length);
        }
        System.out.println("调整为大顶堆:"+ Arrays.toString(arr));//大顶堆{9,6,8,5,4}

        //第二步:将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再讲堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
        //第三步:重新调整结构,使其继续满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
        for(int j = arr.length - 1;j > 0; j--){
            //交换
            temp=arr[j];
            arr[j]= arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j);
        }
        System.out.println("最终有序序列:"+ Arrays.toString(arr));//大顶堆{4,5,6,8,9}
    }

    /**
     * 功能:完成将以i为叶子节点的树调整为大顶堆
     * @demo int arr[] = {4,6,8,5,9};i = 1 --> adjustHeap --> {4,9,8,5,6}
     * 如果再调用adjustHeap,传入i=0 --> 大顶堆{9,6,8,5,4}
     * @param arr 待调整的数组
     * @param i 表示非叶子结点在数组中的索引
     * @param length 表示对多少个元素进行继续调整,length逐渐减少
     */
    public static void adjustHeap(int arr[], int i, int length){
        //取出当前元素的值,保存为临时变量
        int temp = arr[i];
        //1、k = i * 2 + 1 ,k是i结点的左子结点
        for(int k = i * 2 + 1; k < length; k = k * 2 + 1){
            //左子结点的值小于右子结点的值
            if(k+1<length && arr[k] < arr[k+1]){
                k++;//k指向右子结点
            }
            //如果子结点大于父节点
            if(arr[k] > temp){
                arr[i] = arr[k];//将较大的值赋给当前结点
                i = k;//i指向k,继续循环比较
            }else{
                break;
            }
        }
        //当for循环结束后,我们已经将以i为父节点的树的最大值,放在了最顶,完成局部大顶堆
        arr[i] = temp;//将temp值放到调整后的位置
    }
}

 2、堆排序控制台输出

3、堆排序性能测试

因为堆排序的时间复杂度是线性对数阶,所以堆排序是非常快的,性能相当强悍,拿1000万条数据进行排序测试一下,let‘s go!

public static void main(String[] args) {
    //模拟测试1000万条数据
    int[] arr = new int[10000000];
    for(int i = 0; i< 10000000; i++){
        arr[i] = (int)(Math.random() * 10000000);
    }
    long start = new Date().getTime();
    heapSort(arr);
    long end = new Date().getTime();
    System.out.println("1000万条数据,堆排序耗时:"+(end-start)+"ms");
}

4、性能测试控制台输出

十一、赫夫曼树

1、基本介绍

(1)给定n个权值作为n个叶子结点,构造一颗二叉树,若该树的带权路径长度wpl达到最小,称这样的二叉树为最优二叉树,也称为赫夫曼树。

(2)赫夫曼树是带权路径长度最短的树,权重较大的结点离根较近。

2、赫夫曼树几个重要概念和举例说明

(1)路径和路径长度

在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

(2)结点的权及带权路径长度

若将树中结点赋给一个有着某种意义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。

(3)树的带权路径长度

树的带权路径长度规定为所有叶子结点的带权路径长度之和,为WPL(weighted path length),权重越大的结点离根结点越近的二叉树才是最优二叉树。

(4)WPL最小的就是赫夫曼树。

3、赫夫曼树创建思路

  1. 从小到大进行排序,将每一个数据,每个数据都是一个结点,每个结点可以看成是一颗最简单的二叉树
  2. 取出根结点权重最小的两颗二叉树
  3. 组成一颗新的二叉树,该新的二叉树的根结点的权值是前面两颗二叉树根结点权值的和
  4. 再将这颗新的二叉树,以根结点的权值大小再次排序,不断重复1-2-3-4的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树

4、赫夫曼树代码实例

(1)Node

package com.guor.huffmantree;

public class Node implements Comparable<Node>{
    int value;//结点权值
    Node left;//指向左子结点
    Node right;//指向右子结点

    public Node(int value){
        this.value = value;
    }

    @Override
    public String toString(){
        return "Node [value="+value+"]";
    }

    @Override
    public int compareTo(Node o) {
        //表示从小到大排序
        return this.value - o.value;
    }

    //写一个前序遍历
    public void preOrder(){
        System.out.println(this);
        if(this.left != null){
            this.left.preOrder();
        }
        if(this.right != null){
            this.right.preOrder();
        }
    }
}

(2)创建赫夫曼树HuffmanTree

package com.guor.huffmantree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {
    public static void main(String[] args) {
        int[] arr = {13,7,8,3,29,6,1};
        Node root = createHuffmanTree(arr);

        //测试
        preOrder(root);
    }

    //编写一个前序遍历的方法
    public static void preOrder(Node root){
        if(root != null){
            root.preOrder();
        }else {
            System.out.println("空树不能遍历.");
        }
    }

    //创建赫夫曼树的方法
    public static Node createHuffmanTree(int[] arr){
        List<Node> nodeList = new ArrayList<>();
        for(int value : arr){
            nodeList.add(new Node(value));
        }

        //处理的过程是一个循环的过程
        while (nodeList.size() > 1){
            //从小到大排序
            Collections.sort(nodeList);
            System.out.println("nodes="+nodeList);

            //取出根结点权值最小的两颗二叉树
            //1、取出权值最小的结点
            Node leftNode = nodeList.get(0);

            //2、取出权值第二小的结点
            Node rightNode = nodeList.get(1);

            //3、构建一颗新的二叉树
            Node parent = new Node(leftNode.value + rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;

            //4、从list中删除处理过的二叉树
            nodeList.remove(leftNode);
            nodeList.remove(rightNode);

            //5、将parent加入list
            nodeList.add(parent);
        }

        //返回赫夫曼树的root结点
        return nodeList.get(0);
    }
}

(3)控制台输出

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

二叉树知识总结 的相关文章

  • Java中ArrayList的交集和并集

    有什么方法可以做到这一点吗 我正在寻找 但没有找到 另一个问题 我需要这些方法 以便我可以过滤文件 有些是AND过滤器 有些是OR过滤器 就像集合论中的那样 所以我需要根据所有文件和保存这些文件的联合 相交 ArrayList 进行过滤 我
  • Spring应用中Eureka健康检查的问题

    我正在开发一个基于 Spring 的应用程序 其中包含多个微服务 我的一个微服务充当尤里卡服务器 到目前为止一切正常 在我所有其他微服务中 用 EnableEurekaClient 我想启用这样的健康检查 应用程序 yml eureka c
  • 在内存中使用 byte[] 创建 zip 文件。 Zip 文件总是损坏

    我创建的 zip 文件有问题 我正在使用 Java 7 我尝试从字节数组创建一个 zip 文件 其中包含两个或多个 Excel 文件 应用程序始终完成 没有任何异常 所以 我以为一切都好 当我尝试打开 zip 文件后 Windows 7 出
  • 如何使用assertEquals 和 Epsilon 在 JUnit 中断言两个双精度数?

    不推荐使用双打的assertEquals 我发现应该使用带有Epsilon的形式 这是因为双打不可能100 严格 但无论如何我需要比较两个双打 预期结果和实际结果 但我不知道该怎么做 目前我的测试如下 Test public void te
  • 如何在java中将一个数组列表替换为另一个不同大小的数组列表

    我有两个大小不同的数组列表 如何从此替换 ArrayList
  • HSQL - 识别打开连接的数量

    我正在使用嵌入式 HSQL 数据库服务器 有什么方法可以识别活动打开连接的数量吗 Yes SELECT COUNT FROM INFORMATION SCHEMA SYSTEM SESSIONS
  • 如何在 Spring 中禁用使用 @Component 注释创建 bean?

    我的项目中有一些用于重构逻辑的通用接口 它看起来大约是这样的 public interface RefactorAwareEntryPoint default boolean doRefactor if EventLogService wa
  • jQuery AJAX 调用 Java 方法

    使用 jQuery AJAX 我们可以调用特定的 JAVA 方法 例如从 Action 类 该 Java 方法返回的数据将用于填充一些 HTML 代码 请告诉我是否可以使用 jQuery 轻松完成此操作 就像在 DWR 中一样 此外 对于
  • 在 Jar 文件中运行 ANT build.xml 文件

    我需要使用存储在 jar 文件中的 build xml 文件运行 ANT 构建 该 jar 文件在类路径中可用 是否可以在不分解 jar 文件并将 build xml 保存到本地目录的情况下做到这一点 如果是的话我该怎么办呢 Update
  • 在接口中使用默认方法是否违反接口隔离原则?

    我正在学习 SOLID 原则 ISP 指出 客户端不应被迫依赖于他们所使用的接口 不使用 在接口中使用默认方法是否违反了这个原则 我见过类似的问题 但我在这里发布了一个示例 以便更清楚地了解我的示例是否违反了 ISP 假设我有这个例子 pu
  • Java ResultSet 如何检查是否有结果

    结果集 http java sun com j2se 1 4 2 docs api java sql ResultSet html没有 hasNext 方法 我想检查 resultSet 是否有任何值 这是正确的方法吗 if resultS
  • Java 和 Python 可以在同一个应用程序中共存吗?

    我需要一个 Java 实例直接从 Python 实例数据存储中获取数据 我不知道这是否可能 数据存储是否透明 唯一 或者每个实例 如果它们确实可以共存 都有其单独的数据存储 总结一下 Java 应用程序如何从 Python 应用程序的数据存
  • Cucumber 0.4.3 (cuke4duke) 与 java + maven gem 问题

    我最近开始为 Cucumber 安装一个示例项目 并尝试使用 maven java 运行它 我遵循了这个指南 http www goodercode com wp using cucumber tests with maven and ja
  • 最新的 Hibernate 和 Derby:无法建立 JDBC 连接

    我正在尝试创建一个使用 Hibernate 连接到 Derby 数据库的准系统项目 我正在使用 Hibernate 和 Derby 的最新版本 但我得到的是通用的Unable to make JDBC Connection error 这是
  • Opencv Java 灰度

    我编写了以下程序 尝试从彩色转换为灰度 Mat newImage Imgcodecs imread q1 jpg Mat image new Mat new Size newImage cols newImage rows CvType C
  • 如何使用mockito模拟构建器

    我有一个建造者 class Builder private String name private String address public Builder setName String name this name name retur
  • 包 javax.el 不存在

    我正在使用 jre6 eclipse 并导入 javax el 错误 包 javax el 不存在 javac 导入 javax el 过来 这不应该是java的一部分吗 谁能告诉我为什么会这样 谢谢 米 EL 统一表达语言 是 Java
  • 长轮询会冻结浏览器并阻止其他 ajax 请求

    我正在尝试在我的中实现长轮询Spring MVC Web 应用程序 http static springsource org spring docs 2 0 x reference mvc html但在 4 5 个连续 AJAX 请求后它会
  • CamcorderProfile.videoCodec 返回错误值

    根据docs https developer android com reference android media CamcorderProfile html 您可以使用CamcorderProfile获取设备默认视频编解码格式 然后将其
  • Spring Boot 无法更新 azure cosmos db(MongoDb) 上的分片集合

    我的数据库中存在一个集合 documentDev 其分片键为 dNumber 样本文件 id 12831221wadaee23 dNumber 115 processed false 如果我尝试使用以下命令通过任何查询工具更新此文档 db

随机推荐

  • 数学模型——数学与人类文明的桥梁

    序言 数统治着宇宙 Pythagoras 数学一词在西方源于古希腊语 意思是通过学习获得知识 显然 早期数学涵盖的范围比我们今天要广得多 人类科学发展至今 衍生出生物科学 信息科学 金融学 计算机科学等不胜枚举的领域与分支 而数学模型正是数
  • Word打印或打印预览或另存为PDF时出现“错误!未定义书签!”的解决办法

    出处 http blog sina com cn s blog 5ee0924f0101a05l html 今天在单独打印一份三页的目录Word文档时 所有目录的页码全部变为 错误 未定义书签 很是奇妙 一开始还以为是打印问题 又重新打印了
  • 如何使用Google Compute Engine入门指南快速创建和配置您的云虚拟机实例

    文章目录 步骤1 创建 Google Cloud Platform GCP 账户 步骤2 设置 GCP 项目 步骤3 启用 Google Compute Engine API 步骤4 安装 Google Cloud SDK 步骤5 创建虚拟
  • sql中使用union 或者union all语句时,两边的列的顺序必须保持一致

    sql中使用union 或者union all语句时 两边的列的顺序必须保持一致
  • [HashMap源码学习之路]---hashcode的作用及数组长度为什么是2的n次幂

    HashMap中的hashcode作用 HashMap是Java 中很重要的一个概念 工作中使用的频率也非常广泛 需要对其进行了解 看源码是很枯燥的 但是看懂了 却有种豁然开朗的感觉 觉得特别棒 本篇只说hashcode的作用及数组长度为什
  • Java Thread synchronized同步锁简介说明

    转自 Java Thread synchronized同步锁简介说明 下文笔者讲述Thread synchronized同步锁的简介说明 如下所示 java中 每一个对象只有一个同步锁 同步锁放置在对象头上 当我们调用一个对象的synchr
  • VS2019中搭建QT 5.15.2开发环境

    接触QT VS一年多 对于环境搭建的一些细节已有些遗忘 最近又要重新搭建环境 就以此文章来记录一下搭建的细节 方便日后查询 1 VS2019与QT5 14 2的安装 VS2019的安装链接下载 Visual Studio Tools 免费安
  • 在keil工程中删除编译文件的方法

    在实际工作中coding的工作是一方面 但是作为最终的输出是要提交源码作为成果来管理和上传的 不管是Git也好SVN也好 一般都要求只保存源码和工程文件 针对单片机MCU类的项目 对于Linux下的项目没有工程文件一说 只有配置信息和整个工
  • unity粒子系统

    添加粒子系统 按照GameObject gt Effect gt Particle System顺序 添加粒子系统 效果如下 粒子系统有其独特的组件 Particle System 展开上面的一系列属性中的Particle System 调
  • 机器学习加速器文献整理

    William J Dally 团队 文献一SCNN An Accelerator for Compresse d sparse Convolutional Neural Networks1 文献二EIE Efficient Inferen
  • DirectX9 SDK Samples(12) CustomUI Sample

    这一次的例子是关于DXUT的UI 下面先翻译文档中的比较重要的说明 这个例子开始时定义了两个CDXUTDialog对象 g HUD和g SampleUI 一个CDXUTDialog是一个装入了一个或多个控件 按钮等 的容器 对话框 CDXU
  • 部分HTTPS网站无法访问的可能原因

    最近访问一些HTTPS的网站 总有一些网站无法正常访问 总是提示证书过期 查看了下对应网站的证书 没到期呀 于是总认为是自己系统或者浏览器的问题 可查来查去 改来改去也无法解决问题 直到仔细观察了下证书颁发机构 才发现都是一个机构的 Let
  • java swing 日志_springBoot swing 界面实现配置和日志打印

    packagecom adao simulater swing importcom adao simulater common Constant importcom adao simulater common PropertiesUtil
  • http请求与Request常用方法

    一 http请求 HTTP请求报文由3部分组成 请求行 请求头 请求体 是请求方法 GET和POST是最常见的HTTP方法 除此以外还包括DELETE HEAD OPTIONS PUT TRACE 不过 当前的大多数浏览器只支持GET和PO
  • 安装cnpm(傻瓜式通俗移动)

    1 首先确保自己安装好node并且npm能正常使用 2 以管理员身份打开cmd 3 输入npm install g cnpm registry https registry npm taobao org并运行 4 等待安装结束后 输入 cn
  • PWM调光调色温技术学习(笔记)

    前言 在智能化的浪潮中 智能照明是智能家居中非常重要的一部分 由于LED照明的大量普及 相对于传统的节能灯和白炽灯 LED照明的可塑性强很多 这其中LED灯的亮度调节和色温调节已经成为智能照明的主流需求 本文就从LED照明的亮度调节 色温调
  • [网络安全自学篇] 三十一.文件上传之Upload-labs靶场及CTF题目01-10(四)

    这是作者的系列网络安全自学教程 主要是关于安全工具和实践操作的在线笔记 特分享出来与博友们学习 希望您们喜欢 一起进步 前文分享了编辑器漏洞和IIS高版本文件上传漏洞 包括FCKeditor eWebEditor 畸形解析漏洞等 本篇文章将
  • Linux 如何快速查看 IP 地址

    查看IP 1 进入Linux 系统 在主页面空旷的地方右键 选择 打开终端 2 在显示的界面中输入 ifconfig a 就可以查看到Linux 的地址了 快速查看IP 和修改 1 点击应用程序 gt 选择系统工具 选择设置 gt 找到网络
  • Ubuntu 安装 zshell

    一 检查系统中原来的shell cat etc shells 二 安装 zsh apt install zsh 安装zsh chsh s bin zsh 将zsh设置成默认shell 不设置的话启动zsh只有直接zsh命令即可 三 安装oh
  • 二叉树知识总结

    一 前言 数组的搜索比较方便 可以直接用下标 但删除和插入就比较麻烦 链表与之相反 删除和插入元素很快 但查找比较慢 此时 二叉树应运而生 二叉树既有链表的好处 也有数组的好处 在处理大批量的动态数据时比较好用 是一种折中的选择 文件系统和