图像分类:Pytorch图像分类之--LetNet模型

2023-11-11

前言

最近再由于工作需要正在研究图像分类和目标检测,为了方便后续查询,故作记录,同时也为了方便大家,一同进步。
在进行查阅资料的时候发现有针对目标分类的大牛,他博客记录的很全面,让我少走了不少弯路,现在贴出来,供大家一起学习:
pytorch图像分类篇:2.pytorch官方demo实现一个分类器(LeNet)

LetNet简介

  LetNet是图像分类模型中比较经典的模型,该模型一共有五层:两个卷积层+两个池化层+三个全连接层(一般模型中说的多少层不包含池化层,只包含卷积层和全连接层)。
在这里插入图片描述

程序的实现

  为了更加透彻的理解该模型,接下来用程序构建该模型,并进行训练和预测;
  在工程中主要有四个文件:

model.py          #定义LeNet网络模型
train.py          #加载数据集并训练,保存训练好的网络参数
train_tool.py     #模型训练过程中用到的函数,训练集计算loss,测试集计算accuracy
predict.py        #得到训练好的网络参数后,用自己找的图像进行分类测试
model.py的实现
# 使用torch.nn包来构建神经网络.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary

class LetNet(nn.Module): 					# 继承于nn.Module这个父类
    def __init__(self):						# 初始化网络结构
        super(LetNet, self).__init__()    	# 多继承需用到super函数
        self.conv1 = nn.Conv2d(3, 16, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(32*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):			 # 正向传播过程
        x = F.relu(self.conv1(x))    # input(3, 32, 32) output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        return x


device = "cuda" if torch.cuda.is_available() else "cpu"   #判断机器用的GPU还是CPU
print("Using {} device".format(device))

model = LetNet().to(device)  #实例化网络
summary(model)      #对应结果1
print(model)        #对应结果2

结果1:

Using cpu device
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
LetNet                                   --
├─Conv2d: 1-1                            1,216
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            12,832
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            96,120
├─Linear: 1-6                            10,164
├─Linear: 1-7                            850
=================================================================
Total params: 121,182
Trainable params: 121,182
Non-trainable params: 0
=================================================================

结果2:

LetNet(
  (conv1): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1))
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=800, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
LetNet模型操作流程

pytorch 中 tensor(也就是输入输出层)的 通道排序为:[batch, channel, height, width]
在这里插入图片描述

经过Conv卷积后输出尺寸的计算公式如下

o u t p u t = w − f + 2 p s + 1 output = \frac{w-f+2p}{s}+1 output=swf+2p+1
​​
​​​​上式中参数含义:
w : 输入图片大小 w×w(一般情况下Width=Height)
f : fifter(卷积核)大小f×f
p : padding大小(像素个数)
s : 步长大小

Conv2d()函数介绍
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

在这里插入图片描述

MaxPool2d()函数介绍
class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
Tensor的展平:view()

在经过第二个池化层后,数据还是一个三维的Tensor (32, 5, 5),需要先经过展平后(32×5×5)再传到全连接层:

  x = x.view(-1, 32*5*5)       # output(32*5*5)
  x = F.relu(self.fc1(x))      # output(120)

注意:view中一个参数指定为-1代表自动调整这个维度上的元素个数,以保证元素总数不变;

train.py
import torch
import torchvision
import torchvision.transforms as transforms
from train_tool import TrainTool
from model import LetNet
import torch.nn as nn
import torch.optim as optim

#判断GPU和CPU
device = torch.device("duda" if torch.cuda.is_available() else "cpu")

#导入训练集
train_dataset = torchvision.datasets.CIFAR10(root='./data', download=True, train=True, transform=transforms.Compose([transforms.ToTensor()]))
#导入测试集
test_dataset = torchvision.datasets.CIFAR10(root='./data',download=True,train=False,transform=transforms.Compose([transforms.ToTensor()]))
#加载训练集
train_loader = torch.utils.data.DataLoader(train_dataset,
                                                batch_size=50,
                                                shuffle=True,
                                                num_workers=0)
#加载测试集
test_loader = torch.utils.data.DataLoader(test_dataset,
                                               batch_size=50,
                                               shuffle=True,
                                               num_workers=0)


#定义超参数
letnet = LetNet()   #定义网络模型
loss_function = nn.CrossEntropyLoss()  #定义损失函数为交叉熵
optimizer = optim.Adam(letnet.parameters(), lr=0.001)  #定义优化器定义参数学习率

#正式训练
train_acc = []
train_loss = []
test_acc = []
test_loss = []

epoch = 0

#for epoch in range(epochs):
while True:
    epoch = epoch + 1;
    # letnet.train()
    epoch_train_acc, epoch_train_loss = TrainTool.train(train_loader, letnet, optimizer, loss_function, device)

    # letnet.eval()
    epoch_test_acc, epoch_test_loss = TrainTool.test(test_loader,letnet, loss_function,device)

    if epoch_train_acc < 0.98:
       template = ('Epoch:{:2d}, train_acc:{:.1f}%, train_loss:{:.2f}, test_acc:{:.1f}%, test_loss:{:.2f}')
       print(template.format(epoch, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
       continue
    else:
       torch.save(letnet.state_dict(),'./model/letnet_params.pth')
       print('Done')
       break
导入数据集

 导入torchvision中自带的数据集,此demo用的是CIFAR10数据集,也是一个很经典的图像分类数据集,由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集,一共包含 10 个类别的 RGB 彩色图片。

#导入训练集
train_dataset = torchvision.datasets.CIFAR10(root='./data', download=True, train=True, transform=transforms.Compose([transforms.ToTensor()]))
#导入测试集
test_dataset = torchvision.datasets.CIFAR10(root='./data',download=True,train=False,transform=transforms.Compose([transforms.ToTensor()]))
加载数据集
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device='')

Parameters 解释:

  • dataset (Dataset) – dataset from which to load the data.

  • batch_size (int, optional) – how many samples per batch to load (default: 1).

  • shuffle (bool, optional) – set to True to have the data reshuffled at every epoch (default: False).

  • sampler (Sampler or Iterable, optional) – defines the strategy to draw samples from the dataset. Can be any Iterable with len implemented. If specified, shuffle must not be specified.

  • batch_sampler (Sampler or Iterable, optional) – like sampler, but returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and drop_last.

  • num_workers (int, optional) – how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)

  • collate_fn (Callable, optional) – merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.

  • pin_memory (bool, optional) – If True, the data loader will copy Tensors into device/CUDA pinned memory before returning them. If your data elements are a custom type, or your collate_fn returns a batch that is a custom type, see the example below.

  • drop_last (bool, optional) – set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False)

  • timeout (numeric, optional) – if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: 0)

  • worker_init_fn (Callable, optional) – If not None, this will be called on each worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)

  • generator (torch.Generator, optional) – If not None, this RNG will be used by RandomSampler to generate random indexes and multiprocessing to generate base_seed for workers. (default: None)

  • prefetch_factor (int, optional, keyword-only arg) – Number of batches loaded in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across all workers. (default: 2)

  • persistent_workers (bool, optional) – If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. (default: False)

  • pin_memory_device (str, optional) – the data loader will copy Tensors into device pinned memory before returning them if pin_memory is set to true.

参数设置
#定义超参数
letnet = LetNet().to(device)   #定义网络模型
loss_function = nn.CrossEntropyLoss()  #定义损失函数为交叉熵
optimizer = optim.Adam(letnet.parameters(), lr=0.001)  #定义优化器定义参数学习率
训练数据

TrainTool.train()函数在train_tool.py文件中有定义

epoch_train_acc, epoch_train_loss = TrainTool.train(train_loader, letnet, optimizer, loss_function, device)
保存模型

这里只保存了模型的参数:

torch.save(letnet.state_dict(),'./model/letnet_params.pth')

模型的保存有两种形式:
(1)保存整个网络模型,网络结构+权重参数 ;(不推荐)

torch.save(model,'net.pth')   #保存
model=torch.load('net.pth')   #加载整个网络比较耗时

(2)只保存模型参数 (速度快,占内存少;推荐)

torch.save(model.state_dict(),'net_params.pth')   #保存模型的权重参数

model=myNet()                           #加载模型参数
model.load_state_dict(torch.load('./model/net_params.pth'))
train_tool.py
import torch
import matplotlib.pyplot as plt

class TrainTool:
      def image_show(images):
          print(images.shape)
          images = images.numpy()   #将图片有tensor转换成array
          print(images.shape)
          images = images.transpose((1, 2, 0))   # 将【3,224,256】-->【224,256,3】
          # std = [0.5, 0.5, 0.5]
          # mean = [0.5, 0.5, 0.5]
          # images = images * std + mean
          print(images.shape)
          plt.imshow(images)
          plt.show()


      def train(train_loader, letnet, optimizer, loss_function, device):
          train_size = len(train_loader.dataset)  # 训练集的大小
          num_batches = len(train_loader)  # 批次数目

          train_acc, train_loss = 0, 0  # 初始化正确率和损失
          # 获取图片及标签
          for images, labels in train_loader:
              images, labels = images.to(device), labels.to(device)
              # 计算预测误差
              pred_labels = letnet(images)
              loss = loss_function(pred_labels, labels)
              # 反向传播
              optimizer.zero_grad()  # grad属性归零
              loss.backward()  # 反向传播
              optimizer.step()  # 每一步自动更新
              # 记录acc和loss
              train_acc += (pred_labels.argmax(1) == labels).type(torch.float).sum().item()
              train_loss += loss.item()

          train_acc /= train_size
          train_loss /= num_batches

          return train_acc, train_loss



      def test(test_loader, letnet, loss_function, device):
          test_size = len(test_loader.dataset)  # 测试集的大小,一共10000张图片
          num_batches = len(test_loader)  # 批次数目,313(10000/32=312.5,向上取整)
          test_loss, test_acc = 0, 0

          # 当不进行训练时,停止梯度更新,节省计算内存消耗
          with torch.no_grad():
              for images, labels in test_loader:
                  images, labels = images.to(device), labels.to(device)

                  # 计算loss
                  pred_labels = letnet(images)
                  loss = loss_function(pred_labels, labels)

                  test_acc += (pred_labels.argmax(1) == labels).type(torch.float).sum().item()
                  test_loss += loss.item()

          test_acc /= test_size
          test_loss /= num_batches

          return test_acc, test_loss

文件中三个函数:
image_show() 加载图片后显示图片用函数
train() 计算训练集正确率和误差的函数
test() 计算测试集正确率和误差的函数

predict.py
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import LetNet

#数据预处理
transforms = transforms.Compose([transforms.Resize((32, 32)),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#导入要测试的图像
image = Image.open('./data/1.jpeg')
image = transforms(image)
image = torch.unsqueeze(image, dim=0)

#实例化网络,加载训练好的模型参数
model = LetNet()
model.load_state_dict(torch.load('./model/letnet_params.pth'))

#预测
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

with torch.no_grad():
    outputs = model(image)
    print(outputs)
    predict = torch.max(outputs, dim=1)[1].data.numpy()
    print(predict)
print(classes[int(predict)])

如有错误欢迎指正!

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

图像分类:Pytorch图像分类之--LetNet模型 的相关文章

  • 使用 pythonbrew 编译 Python 3.2 和 2.7 时出现问题

    我正在尝试使用构建多个版本的 python蟒蛇酿造 http pypi python org pypi pythonbrew 0 7 3 但我遇到了一些测试失败 这是在运行的虚拟机上 Ubuntu 8 04 32 位 当我使用时会发生这种情
  • Python 中的 Lanczos 插值与 2D 图像

    我尝试重新缩放 2D 图像 灰度 图像大小为 256x256 所需输出为 224x224 像素值范围从 0 到 1300 我尝试了两种使用 Lanczos 插值来重新调整它们的方法 首先使用PIL图像 import numpy as np
  • 将 saxon 与 python 结合使用

    我需要使用 python 处理 XSLT 目前我正在使用仅支持 XSLT 1 的 lxml 现在我需要处理 XSLT 2 有没有办法将 saxon XSLT 处理器与 python 一起使用 有两种可能的方法 设置一个 HTTP 服务 接受
  • 通过最小元素比较对 5 个元素进行排序

    我必须在 python 中使用元素之间的最小比较次数来建模对 5 个元素的列表进行排序的执行计划 除此之外 复杂性是无关紧要的 结果是一个对的列表 表示在另一时间对列表进行排序所需的比较 我知道有一种算法可以通过 7 次比较 总是在元素之间
  • 从字符串中删除识别的日期

    作为输入 我有几个包含不同格式日期的字符串 例如 彼得在16 45 我的生日是1990年7月8日 On 7 月 11 日星期六我会回家 I use dateutil parser parse识别字符串中的日期 在下一步中 我想从字符串中删除
  • 如何在 Python 中检索 for 循环中的剩余项目?

    我有一个简单的 for 循环迭代项目列表 在某些时候 我知道它会破裂 我该如何退回剩余的物品 for i in a b c d e f g try some func i except return remaining items if s
  • 如何替换 pandas 数据框列中的重音符号

    我有一个数据框dataSwiss其中包含瑞士城市的信息 我想用普通字母替换带有重音符号的字母 这就是我正在做的 dataSwiss Municipality dataSwiss Municipality str encode utf 8 d
  • Python pickle:腌制对象不等于源对象

    我认为这是预期的行为 但想检查一下 也许找出原因 因为我所做的研究结果是空白 我有一个函数可以提取数据 创建自定义类的新实例 然后将其附加到列表中 该类仅包含变量 然后 我使用协议 2 作为二进制文件将该列表腌制到文件中 稍后我重新运行脚本
  • OpenCV 无法从 MacBook Pro iSight 捕获

    几天后 我无法再从 opencv 应用程序内部打开我的 iSight 相机 cap cv2 VideoCapture 0 返回 并且cap isOpened 回报true 然而 cap grab 刚刚返回false 有任何想法吗 示例代码
  • 从 Flask 访问 Heroku 变量

    我已经使用以下命令在 Heroku 配置中设置了数据库变量 heroku config add server xxx xxx xxx xxx heroku config add user userName heroku config add
  • Flask如何获取请求的HTTP_ORIGIN

    我想用我自己设置的 Access Control Allow Origin 标头做出响应 而弄清楚请求中的 HTTP ORIGIN 参数在哪里似乎很混乱 我在用着烧瓶 0 10 1 以及HTTP ORIGIN似乎是这个的特点之一object
  • 在Python中获取文件描述符的位置

    比如说 我有一个原始数字文件描述符 我需要根据它获取文件中的当前位置 import os psutil some code that works with file lp lib open path to file p psutil Pro
  • 如何使用Python创建历史时间线

    So I ve seen a few answers on here that helped a bit but my dataset is larger than the ones that have been answered prev
  • 使用 \r 并打印一些文本后如何清除控制台中的一行?

    对于我当前的项目 有一些代码很慢并且我无法使其更快 为了获得一些关于已完成 必须完成多少的反馈 我创建了一个进度片段 您可以在下面看到 当你看到最后一行时 sys stdout write r100 80 n I use 80覆盖最终剩余的
  • Pandas:merge_asof() 对多行求和/不重复

    我正在处理两个数据集 每个数据集具有不同的关联日期 我想合并它们 但因为日期不完全匹配 我相信merge asof 是最好的方法 然而 有两件事发生merge asof 不理想的 数字重复 数字丢失 以下代码是一个示例 df a pd Da
  • Jupyter Notebook 内核一直很忙

    我已经安装了 anaconda 并且 python 在 Spyder IPython 等中工作正常 但是我无法运行 python 笔记本 内核被创建 它也连接 但它始终显示黑圈忙碌符号 防火墙或防病毒软件没有问题 我尝试过禁用两者 我也无法
  • 向 Altair 图表添加背景实心填充

    I like Altair a lot for making graphs in Python As a tribute I wanted to regenerate the Economist graph s in Mistakes we
  • Conda SafetyError:文件大小不正确

    使用创建 Conda 环境时conda create n env name python 3 6 我收到以下警告 Preparing transaction done Verifying transaction SafetyError Th
  • 在 Qt 中自动调整标签文本大小 - 奇怪的行为

    在 Qt 中 我有一个复合小部件 它由排列在 QBoxLayouts 内的多个 QLabels 组成 当小部件调整大小时 我希望标签文本缩放以填充标签区域 并且我已经在 resizeEvent 中实现了文本大小的调整 这可行 但似乎发生了某
  • Python Selenium:如何在文本文件中打印网站上的值?

    我正在尝试编写一个脚本 该脚本将从 tulsaspca org 网站获取以下 6 个值并将其打印在 txt 文件中 最终输出应该是 905 4896 7105 23194 1004 42000 放置的动物 的 HTML span class

随机推荐

  • Oracle TNS简述

    什么是TNS TNS是Oracle Net的一部分 专门用来管理和配置Oracle数据库和客户端连接的一个工具 在大多数情况下客户端和数据库要通讯 必须配置TNS 当然在少数情况下 不用配置TNS也可以连接Oracle数据库 比如通过JDB
  • java使用xfire创建和调用webservices

    1 创建工程 File gt New gt Web Service Project 弹出Web Service Project窗口 需要填写Project Name 例子是Demo 选择XFire 然后一路next 直到完成 创建完成后 打
  • 如何让Element UI的Message消息提示每次只弹出一个

    Element UI的Message消息提示是点击一次触发一次的 在开发的时候经常会作为一些校验提示 但是公司的测试人员在进行测试时会一直点 然后就会出现如下图的情况 虽然客户使用的时候一般来说不会出现这种情况 毕竟客户不会闲着没事一直点点
  • 用 visio 2013反转图形或镜像图形

    软件版本 visio 2013 选择待反转图形 依次点击 开始 位置 旋转形状 即可根据需求进行图形反转 若需要进行图形镜像操作 可提前将图形复制出一份 将复制出来的图形进行垂直反转或水平反转
  • 2020年tensorflow定制训练模型笔记(3)——开始训练

    现在 我们开始训练文件 这里 我将用一些训练好的模型来做迁移训练 这里简单介绍一下迁移训练 迁移训练就是在别人训练的模型基础上继续训练 这样我们的模型训练就不是从零开始 加快速度以及提高准确率 我讲的比较简单 参考网址在这 https bl
  • 华为OD题目:快递投放问题

    华为OD题目 快递投放问题 有N个快递站点用字符串标识 某些站点之间有道路连接 每个站点有一些包裹要运输 每个站点间的包裹不重复 路上有检查站会导致部分货物无法通行 计算哪些货物无法正常投递 输入描述 1 第一行输入M N M个包裹N个道路
  • python中的random和range

    random import random print random randint 1 10 产生 1 到 10 的一个整数型随机数 包括1和10 print random random 产生 0 到 1 之间的随机浮点数 print ra
  • 靶场 : upload-labs1-10

    搭建 用phpstudy搭建的 搭建很简单 下载源码 放置在phpstudy的根目录下 在phpstudy中创建 步骤 这里上传的文件内容是一句话木马 pass 1 上传一个php文件试一试 传不上的 使用的白名单过滤的 我们考虑一下是什么
  • 12个超好用的配色网站

    每次做海报做ppt的时候总是为配色发愁 到底怎样才能调出好看的配色方案呢 调着调着感觉自己已经是个色盲了 今天小编就给你们带来了福利 12个超好用的配色网站推荐 01 Material Palette 网站地址 http www mater
  • 【SpringCloud】四、Spring Cloud Config

    Spring Cloud Config 前言 一 什么是配置中心 1 为什么需要分布式配置中心 2 常用分布式配置中心框架 二 什么是Spring Cloud Config 1 Springcloud config 的工作原理 2 构建 S
  • truffle教程

    直接在geth的控制台通过solc进行编译部署的示例已经很多了 比如这篇博客 此处不再赘述 本文主要演示怎样通过truffle部署以太坊智能合约 truffle是一个以太坊智能合约开发框架 它会帮你做很多琐碎的事情 安装使用都很简单 1 安
  • element-ui页面加载正确,页码错误

    期望效果 进入详情前第二页 从详情返回后还在第二页 先说我之前的误区 哈哈 之前想的是路由跳转时传参到详情页 详情页跳回时再传回来 绕了一圈 并不是最好的解决方案 解决办法 sessionStorage或localStorage 本质上最正
  • 深入理解 ES6 Promise

    https segmentfault com a 1190000020934044 引语 最近一段时间在重温ES6 Promise应该是是ES6新特性中非常重要的一部分内容 其实Promise在我日常开发中已经用得比较多 但大多数时候只是知
  • 智能优化算法之粒子群算法(PSO)的实现(Python附源码)

    一 粒子群算法的实现思路 粒子群算法 Particle Swarm Optimization PSO 是于1995年被Kennedy等人提出的一种模拟自然界中鸟群进行觅食过程的一种群智能优化算法 该算法将待求解问题的每一个候选解视作鸟群中的
  • 不得不会的代码注释工具——doxygen

    不得不会的代码注释工具 doxygen 下载 官网下载二进制或者直接用yum或apt工具下载 使用流程 进入项目目录生成doxygen配置文件 doxygen g 修改doxygen配置文件 程序文档输出目录 OUTPUT DIRECTOR
  • 获取List中的数据的实现方法

    大家都知道List是很好的存储数据的集合类 但是获取读取list中数据的方法你知道几种呢 一下是我知道的方法分享给大家 List
  • 黑客帝国全集故事情节解析

    黑客帝国全集故事情节解析 转载自 http www cnitblog com CreatorChen archive 2007 09 27 34083 html 一 前言 从 Matrix I 到 Matrix III 整整四年 一对名叫沃
  • 使用JMeter模拟多IP发送请求(IP欺骗)

    文章目录 一 IP欺骗的使用场景 二 JMeter如何设置IP欺骗 1 获取可用IP 2 配置IP 3 JMeter中配置IP欺骗 三 注意 前言 如果精通LoadRunner 可以直接使用LoadRunner进行IP欺骗 这里介绍如何使用
  • CTF练题(6)棋盘密码解密

    借一道题引出棋盘解密 题目详情如下 题目来自 青少年CTF训练平台 原中学生CTF平台 青少年CTF qsnctf com 题目给予的密文如下 解题 1 使用棋盘密码解码网站进行解密 网站如下 棋盘密码在线加密解密 千千秀字 qqxiuzi
  • 图像分类:Pytorch图像分类之--LetNet模型

    文章目录 前言 LetNet简介 程序的实现 model py的实现 LetNet模型操作流程 经过Conv卷积后输出尺寸的计算公式如下 Conv2d 函数介绍 MaxPool2d 函数介绍 Tensor的展平 view train py