[Python从零到壹] 六十七.图像识别及经典案例篇之基于卷积神经网络的MNIST图像分类

2023-11-09

七月太忙,还是写一篇吧!
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。

该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。

第一部分作者介绍了图像处理基础知识,第二部分介绍了图像运算和图像增强,接下来第三部分我们将详细讲解图像识别及图像处理经典案例,该部分属于高阶图像处理知识,能进一步加深我们的理解和实践能力。图像分类是根据图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。上一篇文章主要讲解常见的图像分类算法,并介绍了Python环境下的贝叶斯图像分类算法和基于KNN算法的图像分类等案例。这篇文章将利用卷积神经网络实现MNIST(手写数字)图像分类,这也是经典的图像分类案例。希望文章对您有所帮助,如果有不足之处,还请海涵。

下载地址:记得点赞喔 O(∩_∩)O

前文赏析:(尽管该部分占大量篇幅,但我舍不得删除,哈哈!)

第一部分 基础语法

第二部分 网络爬虫

第三部分 数据分析和机器学习

第四部分 Python图像处理基础

第五部分 Python图像运算和图像增强

第六部分 Python图像识别和图像高阶案例

第七部分 NLP与文本挖掘

第八部分 人工智能入门知识

第九部分 网络攻防与AI安全

第十部分 知识图谱构建实战

扩展部分 人工智能高级案例

作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。


一.图像分类

图像分类(Image Classification)是对图像内容进行分类的问题,它利用计算机对图像进行定量分析,把图像或图像中的区域划分为若干个类别,以代替人的视觉判断。图像分类的传统方法是特征描述及检测,这类传统方法可能对于一些简单的图像分类是有效的,但由于实际情况非常复杂,传统的分类方法不堪重负。现在,广泛使用机器学习和深度学习的方法来处理图像分类问题,其主要任务是给定一堆输入图片,将其指派到一个已知的混合类别中的某个标签。

在图1中,图像分类模型将获取单个图像,并将为4个标签{cat,dog,hat,mug}分配对应的概率{0.6, 0.3, 0.05, 0.05},其中0.6表示图像标签为猫的概率,其余类比。如图所示,该图像被表示为一个三维数组。在这个例子中,猫的图像宽度为248像素,高度为400像素,并具有红绿蓝三个颜色通道(通常称为RGB)。因此,图像由248×400×3个数字组成或总共297600个数字,每个数字是一个从0(黑色)到255(白色)的整数。图像分类的任务是将这接近30万个数字变成一个单一的标签,如“猫(cat)”。

在这里插入图片描述

那么,如何编写一个图像分类的算法呢?又怎么从众多图像中识别出猫呢?这里所采取的方法和教育小孩看图识物类似,给出很多图像数据,让模型不断去学习每个类的特征。在训练之前,首先需要对训练集的图像进行分类标注,如图2所示,包括cat、dog、mug和hat四类。在实际工程中,可能有成千上万类别的物体,每个类别都会有上百万张图像。

在这里插入图片描述

图像分类是输入一堆图像的像素值数组,然后给它分配一个分类标签,通过训练学习来建立算法模型,接着使用该模型进行图像分类预测。基于神经网络的图像分类流程如图35-3所示,参考网易云课程“莫烦”老师分享。

如下图所示,通常来说,计算机处理的东西和人类有所不同,无论是声音、图片还是文字,它们都只能以数字0或1出现在计算机神经网络里。神经网络看到的图片其实都是一堆数字,对数字的加工处理最终生成另一堆数字,并且具有一定认知上的意义,通过一点点的处理能够得知计算机到底判断这张图片是猫还是狗。

在这里插入图片描述

分类(Classification)属于有监督学习中的一类,它是数据挖掘、机器学习和数据科学中一个重要的研究领域。分类模型类似于人类学习的方式,通过对历史数据或训练集的学习得到一个目标函数,再用该目标函数预测新数据集的未知属性。分类模型主要包括两个步骤:

  • 训练。给定一个数据集,每个样本都包含一组特征和一个类别信息,然后调用分类算法训练模型。
  • 预测。利用生成的模型对新的数据集(测试集)进行分类预测,并判断其分类结果。
    通常为了检验学习模型的性能会使用校验集。数据集会被分成不相交的训练集和测试集,训练集用来构造分类模型,测试集用来检验多少类标签被正确分类。

二.神经网络

神经网络(Neural Network)是对非线性可分数据的分类方法,通常包括输入层、隐藏层和输出层。其中,与输入直接相连的称为隐藏层(Hidden Layer),与输出直接相连的称为输出层(Output Layer)。神经网络算法的特点是有比较多的局部最优值,可通过多次随机设定初始值并运行梯度下降算法获得最优值。图像分类中使用最广泛的是BP神经网络和CNN神经网络。

BP神经网络是一种多层的前馈神经网络,其主要的特点为:信号是前向传播的,而误差是反向传播的。BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置,具体结构如图4所示。

在这里插入图片描述

神经网络的基本组成单元是神经元。神经元的通用模型如图5所示,其中常用的激活函数有阈值函数、Sigmoid函数和双曲正切函数等。

在这里插入图片描述

神经元的输出为:

在这里插入图片描述


三.卷积神经网络

卷积神经网络(Convolutional Neural Networks)是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络。在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被大量应用于计算机视觉、自然语言处理等领域。

在这里插入图片描述

图6是一个识别的CNN模型。最左边的图片是输入层二维矩阵,然后是卷积层,卷积层的激活函数使用ReLU,即。在卷积层之后是池化层,它和卷积层是CNN特有的,池化层中没有激活函数。卷积层和池化层的组合可以在隐藏层出现很多次,上图中循环出现了两次,而实际上这个次数是根据模型的需要而定。常见的CNN都是若干卷积层加池化层的组合,在若干卷积层和池化层后面是全连接层,最后输出层使用了Softmax激活函数来做图像识别的分类。

神经网络是由很多神经层组成,每一层神经层中存在很多神经元,这些神经元是识别事物的关键,当输入是图片时,其实就是一堆数字。卷积是指不在对每个像素做处理,而是对图片区域进行处理,这种做法加强了图片的连续性,看到的是一个图形而不是一个点,也加深了神经网络对图片的理解。
下面结合Google推荐视频详细介绍CNN的原理知识。

假设你有一张小猫咪的照片,如下图所示,它可以被表示为一个薄饼,它有宽度(width)和高度(height),并且由于天然存在红绿蓝三色,它还拥有RGB厚度(depth),此时你的输入深度为3。

在这里插入图片描述

假设我们现在拿出图片的一小块,运行一个具有K个输出的小神经网络,像图中一样把输出表示为垂直的一小列。

在这里插入图片描述

在不改变权重的情况下,通过小神经网络滑动扫遍整个图片,就像我们拿着刷子刷墙一样水平垂直的滑动。

在这里插入图片描述

此时,输出端画出了另一幅图像,如下图中红色区域所示。它与之前的宽度和高度不同,更重要的是它跟之前的深度不同,而不是仅仅只有红绿蓝,现在你得到了K个颜色通道,这种操作称为——卷积

在这里插入图片描述

如果你的块大小是整张图片,那它跟普通的神经网络层没有任何区别,正是由于我们使用了小块,我们有很多小块在空间中共享较少的权重。卷积不在对每个像素做处理,而是对图片区域进行处理,这种做法加强了图片的连续性,也加深了神经网络对图片的理解。

在这里插入图片描述

一个卷积网络是组成深度网络的基础,我们将使用数层卷积而不是数层的矩阵相乘。如下图所示,让它形成金字塔形状,金字塔底是一个非常大而浅的图片,仅包括红绿蓝,通过卷积操作逐渐挤压空间的维度,同时不断增加深度,使深度信息基本上可以表示出复杂的语义。同时,你可以在金字塔的顶端实现一个分类器,所有空间信息都被压缩成一个标识,只有把图片映射到不同类的信息保留,这就是CNN的总体思想。

上图的具体流程如下:

  • 首先,这是有一张彩色图片,它包括RGB三原色分量,图像的长和宽为256x256,三个层面分别对应红(R)、绿(G)、蓝(B)三个图层,也可以看作像素点的厚度。
  • 其次,CNN将图片的长度和宽度进行压缩,变成128x128x16的方块,压缩的方法是把图片的长度和宽度压小,从而增高厚度。
  • 再次,继续压缩至64x64x64,直至32x32x256,此时它变成了一个很厚的长条方块,我们这里称之为分类器Classifier。该分类器能够将我们的分类结果进行预测,MNIST手写体数据集预测结果是10个数字,比如[0,0,0,1,0,0,0,0,0,0]表示预测的结果是数字3,Classifier在这里就相当于这10个序列。
  • 最后,CNN通过不断压缩图片的长度和宽度,增加厚度,最终会变成了一个很厚的分类器,从而进行分类预测。

如果你想实现它,必须还要正确实现很多细节。此时,你已经接触到了块和深度的概念,块(PATCH)有时也叫做核(KERNEL),如下图所示,你堆栈的每个薄饼都被叫做特征图(Feature Map),这里把三个特性映射到K个特征图中,PATCH/KERNEL的功能是从图片中抽离一小部分进行分析,每次抽离的小部分都会变成一个长度、一个宽度、K个厚度的数列。

在这里插入图片描述

另一个你需要知道的概念是——步幅(STRIDE)。它是当你移动滤波器或抽离时平移的像素的数量,每一次跨多少步去抽离图片中的像素点。

在这里插入图片描述

如果步幅STRIDE等于1,表示每跨1个像素点抽离一次,得到的尺寸基本上和输入相同。

在这里插入图片描述

如果步幅STRIDE等于2,表示每次跨2个像素点抽离,意味着变为一半的尺寸。它收集到的信息就会被缩减,图片的长度和宽度被压缩了,压缩合并成更小的一块立方体。

在这里插入图片描述

压缩完之后再合并成一个立方体,它就是更小的一块立方体,包含了图片中的所有信息。

在这里插入图片描述

抽离图片信息的方式称为PADDING(填充),一般分为两种:

  • VALID PADDING: 抽出来这层比原先那层图片宽和长裁剪了一点,抽取的内容全部是图片内的。
  • SAME PADDING: 抽离出的那层与之前的图片一样的长和宽,抽取的内容部分再图片外,图片外的值用0来填充。

在这里插入图片描述

研究发现,卷积过程会丢失一些信息,比如现在想跨2步去抽离原始图片的重要信息,形成长宽更小的图片,该过程中可能会丢失重要的图片信息。为了解决这个问题,通过POOLING(持化)可以避免。其方法是:卷积时不再压缩长宽,尽量保证更多信息,压缩工作交给POOLING。经过图片到卷积,持化处理卷积信息,再卷积再持化,将结果传入两层全连接神经层,最终通过分类器识别猫或狗。

在这里插入图片描述

总结:整个CNN从下往上依次经历“图片->卷积->持化->卷积->持化->结果传入两层全连接神经层->分类器”的过程,最终实现一个CNN的分类处理。

  • IMAGE 图片
  • CONVOLUTION 图层
  • MAX POOLING 更好地保存原图片的信息
  • CONVOLUTION 图层
  • MAX POOLING 更好地保存原图片的信息
  • FULLY CONNECTED 神经网络隐藏层
  • FULLY CONNECTED 神经网络隐藏层
  • CLASSIFIER 分类器

写到这里,CNN的基本原理讲解完毕,希望大家对CNN有一个初步的理解。同时建议大家处理神经网络时,先用一般的神经网络去训练它,如果得到的结果非常好,就没必要去使用CNN,因为CNN结构比较复杂。


四.MNIST数据集

MNIST是手写体识别数据集,它是非常经典的一个神经网络示例。MNIST图片数据集包含了大量的数字手写体图片,如下图所示,我么可以尝试用它进行分类实验。

在这里插入图片描述

MNIST数据集是含标注信息的,上图分别表示数字5、0、4和1。该数据集共包含三部分:

  • 训练数据集:55,000个样本,mnist.train
  • 测试数据集:10,000个样本,mnist.test
  • 验证数据集:5,000个样本,mnist.validation

通常,训练数据集用来训练模型,验证数据集用来检验所训练出来的模型的正确性和是否过拟合,测试集是不可见的(相当于一个黑盒),但我们最终的目的是使得所训练出来的模型在测试集上的效果(这里是准确性)达到最佳。

如图20所示,数据是以该形式被计算机所读取,比如28*28=784个像素点,白色的地方都是0,黑色的地方表示有数字的,总共有55000张图片。

在这里插入图片描述

MNIST数据集中的一个样本数据包含两部分内容:手写体图片和对应的label。这里我们用xs和ys分别代表图片和对应的label,训练数据集和测试数据集都有xs和ys,使用mnist.train.images和mnist.train.labels表示训练数据集中图片数据和对应的label数据。

如图21所示,它表示由28x28的像素点矩阵组成的一张图片,这里的数字784(28x28)如果放在我们的神经网络中,它就是x输入的大小,其对应的矩阵如下图所示,类标label为1。

在这里插入图片描述

最终MNIST的训练数据集形成了一个形状为55000*784位的tensor,也就是一个多维数组,第一维表示图片的索引,第二维表示图片中像素的索引(tensor中的像素值在0到1之间)。

这里的y值其实是一个矩阵,这个矩阵有10个位置,如果它是1的话,它在1的位置(第2个数字)上写1,其他地方写0;如果它是2的话,它在2的位置(第3个数字)上写1,其他位置为0。通过这种方式对不同位置的数字进行分类,例如用[0,0,0,1,0,0,0,0,0,0]来表示数字3,如下图所示。

在这里插入图片描述

mnist.train.labels是一个55000*10的二维数组,如下图所示。它表示55000个数据点,第一个数据y表示5,第二个数据y表示0,第三个数据y表示4,第四个数据y表示1。

在这里插入图片描述

知道MNIST数据集的组成,以及x和y具体的含义,我们就开始编写代码。


五.基于神经网络的图像分类

本文通过Keras搭建一个分类神经网络,再训练MNIST数据集。其中X表示图片,28x28,y对应的是图像的标签。

第一步,导入扩展包。

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop

第二步,载入MNIST数据及预处理。
该步骤的核心代码如下:

  • X_train.reshape(X_train.shape[0], -1) / 255
    将每个像素点进行标准化处理,从0-255转换成0-1的范围。

  • np_utils.to_categorical(y_train, nb_classes=10)
    调用up_utils将类标转换成10个长度的值,如果数字是3,则会在对应的地方标记为1,其他地方标记为0,即{0,0,0,1,0,0,0,0,0,0}。

由于MNIST数据集是Keras或TensorFlow的示例数据,所以我们只需要下面一行代码,即可实现数据集的读取工作。如果数据集不存在它会在线下载,如果数据集已经被下载,它会被直接调用。

# 下载MNIST数据 
# X shape(60000, 28*28) y shape(10000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据预处理
X_train = X_train.reshape(X_train.shape[0], -1) / 255  # normalize
X_test = X_test.reshape(X_test.shape[0], -1) / 255     # normalize

# 将类向量转化为类矩阵  数字 5 转换为 0 0 0 0 0 1 0 0 0 0 矩阵
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

第三步,创建神经网络层。
前面介绍创建神经网络层的方法是定义之后,利用add()添加神经层。

  • model = Sequential()
  • model.add(Dense(output_dim=1, input_dim=1))

而这里采用另一种方法,在Sequential()定义的时候通过列表添加神经层。同时需要注意,这里增加了神经网络激励函数并调用RMSprop加速神经网络。

  • from keras.layers import Dense, Activation
  • from keras.optimizers import RMSprop

该神经网络层为:

  • 第一层为Dense(32, input_dim=784),它将传入的784转换成32个输出
  • 该数据加载一个激励函数Activation(‘relu’),并转换成非线性化数据
  • 第二层为Dense(10),它输出为10个单位。同时Keras定义神经层会默认其输入为上一层的输出,即32(省略)
  • 接着加载一个激励函数Activation(‘softmax’)用于分类

对应代码如下:

# Another way to build your neural net
model = Sequential([
        Dense(32, input_dim=784),  # 输入值784(28*28) => 输出值32
        Activation('relu'),        # 激励函数 转换成非线性数据
        Dense(10),                 # 输出为10个单位的结果
        Activation('softmax')      # 激励函数 调用softmax进行分类
        ])

# Another way to define your optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) #学习率lr

# We add metrics to get more results you want to see
# 激活神经网络
model.compile(
        optimizer = rmsprop,                 # 加速神经网络
        loss = 'categorical_crossentropy',   # 损失函数
        metrics = ['accuracy'],               # 计算误差或准确率
        )

第四步,神经网络训练及预测。

print("Training")
model.fit(X_train, y_train, nb_epoch=2, batch_size=32)    # 训练次数及每批训练大小

print("Testing")
loss, accuracy = model.evaluate(X_test, y_test)

print("loss:", loss)
print("accuracy:", accuracy)

最终的完整代码如下:

# -*- coding: utf-8 -*-
"""
Created on Fri Feb 14 16:43:21 2020 
@author: Eastmount YXZ
"""
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop

#---------------------------载入数据及预处理---------------------------
# 下载MNIST数据 
# X shape(60000, 28*28) y shape(10000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据预处理
X_train = X_train.reshape(X_train.shape[0], -1) / 255  # normalize
X_test = X_test.reshape(X_test.shape[0], -1) / 255     # normalize

# 将类向量转化为类矩阵  数字 5 转换为 0 0 0 0 0 1 0 0 0 0 矩阵
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

#---------------------------创建神经网络层---------------------------
# Another way to build your neural net
model = Sequential([
        Dense(32, input_dim=784),  # 输入值784(28*28) => 输出值32
        Activation('relu'),        # 激励函数 转换成非线性数据
        Dense(10),                 # 输出为10个单位的结果
        Activation('softmax')      # 激励函数 调用softmax进行分类
        ])

# Another way to define your optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) #学习率lr

# We add metrics to get more results you want to see
# 激活神经网络
model.compile(
        optimizer = rmsprop,                 # 加速神经网络
        loss = 'categorical_crossentropy',   # 损失函数
        metrics = ['accuracy'],               # 计算误差或准确率
        )

#------------------------------训练及预测------------------------------
print("Training")
model.fit(X_train, y_train, nb_epoch=2, batch_size=32)    # 训练次数及每批训练大小
print("Testing")
loss, accuracy = model.evaluate(X_test, y_test)

print("loss:", loss)
print("accuracy:", accuracy)

运行代码,首先会下载MNIT数据集。

Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [==============================] - 18s 2us/step

接着输出两次训练的结果,可以看到误差不断减小、正确率不断增大。最终测试输出的误差loss为“0.185575”,正确率为“0.94690”。

在这里插入图片描述

如果读者想更直观地查看我们数字分类的图形,可以定义函数并显示。

在这里插入图片描述

此时的完整代码如下所示:

# -*- coding: utf-8 -*-
"""
Created on Fri Feb 14 16:43:21 2020 
@author: Eastmount YXZ
"""
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
import matplotlib.pyplot as plt
from PIL import Image

#---------------------------载入数据及预处理---------------------------
# 下载MNIST数据 
# X shape(60000, 28*28) y shape(10000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()

#------------------------------显示图片------------------------------
def show_mnist(train_image, train_labels):
    n = 6
    m = 6
    fig = plt.figure()
    for i in range(n):
        for j in range(m):
            plt.subplot(n,m,i*n+j+1)
            index = i * n + j #当前图片的标号
            img_array = train_image[index]
            img = Image.fromarray(img_array)
            plt.title(train_labels[index])
            plt.imshow(img, cmap='Greys')
    plt.show()

show_mnist(X_train, y_train)

# 数据预处理
X_train = X_train.reshape(X_train.shape[0], -1) / 255  # normalize
X_test = X_test.reshape(X_test.shape[0], -1) / 255     # normalize

# 将类向量转化为类矩阵  数字 5 转换为 0 0 0 0 0 1 0 0 0 0 矩阵
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

#---------------------------创建神经网络层---------------------------
# Another way to build your neural net
model = Sequential([
        Dense(32, input_dim=784),  # 输入值784(28*28) => 输出值32
        Activation('relu'),        # 激励函数 转换成非线性数据
        Dense(10),                 # 输出为10个单位的结果
        Activation('softmax')      # 激励函数 调用softmax进行分类
        ])

# Another way to define your optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) #学习率lr

# We add metrics to get more results you want to see
# 激活神经网络
model.compile(
        optimizer = rmsprop,                 # 加速神经网络
        loss = 'categorical_crossentropy',   # 损失函数
        metrics = ['accuracy'],               # 计算误差或准确率
        )

#------------------------------训练及预测------------------------------
print("Training")
model.fit(X_train, y_train, nb_epoch=2, batch_size=32)    # 训练次数及每批训练大小
print("Testing")
loss, accuracy = model.evaluate(X_test, y_test)

print("loss:", loss)
print("accuracy:", accuracy)

六.总结

写到这里,这篇文章就结束了。本文主要通过Keras实现了一个分类学习的案例,并详细介绍了MNIST手写体识别数据集。最后,希望这篇基础性文章对您有所帮助,如果文章中存在错误或不足之处,还请海涵。

感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:

在这里插入图片描述

在这里插入图片描述

请添加图片描述

忙碌的七月,忙碌的2023。转眼四年过去,我和她都不容易,两人每次看“致谢”都会泪目,青春变了,唯有情感不变,希望一家人健康快乐。刚到寝室,要战斗了!

在这里插入图片描述

参考文献:

  • [1]冈萨雷斯著. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
  • [2]杨秀璋, 颜娜. Python网络数据爬取及分析从入门到精通(分析篇)[M]. 北京:北京航天航空大学出版社, 2018.
  • [3]网易云莫烦老师视频:https://study.163.com/course/courseLearn.htm?courseId=1003209007
  • [4]斯坦福机器学习视频NG教授: https://class.coursera.org/ml/class/index
  • [5]机器学习实战—MNIST手写体数字识别 - RunningSucks
  • [6]https://github.com/siucaan/CNN_MNIST
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

[Python从零到壹] 六十七.图像识别及经典案例篇之基于卷积神经网络的MNIST图像分类 的相关文章

  • 将 Matplotlib 误差线放置在不位于条形中心的位置

    我正在 Matplotlib 中生成带有错误栏的堆积条形图 不幸的是 某些层相对较小且数据多样 因此多个层的错误条可能重叠 从而使它们难以或无法读取 Example 有没有办法设置每个误差条的位置 即沿 x 轴移动它 以便重叠的线显示在彼此
  • OpenCV Python cv2.mixChannels()

    我试图将其从 C 转换为 Python 但它给出了不同的色调结果 In C Transform it to HSV cvtColor src hsv CV BGR2HSV Use only the Hue value hue create
  • 通过最小元素比较对 5 个元素进行排序

    我必须在 python 中使用元素之间的最小比较次数来建模对 5 个元素的列表进行排序的执行计划 除此之外 复杂性是无关紧要的 结果是一个对的列表 表示在另一时间对列表进行排序所需的比较 我知道有一种算法可以通过 7 次比较 总是在元素之间
  • 从字符串中删除识别的日期

    作为输入 我有几个包含不同格式日期的字符串 例如 彼得在16 45 我的生日是1990年7月8日 On 7 月 11 日星期六我会回家 I use dateutil parser parse识别字符串中的日期 在下一步中 我想从字符串中删除
  • 使用 on_bad_lines 将 pandas.read_csv 中的无效行写入文件

    我有一个 CSV 文件 我正在使用 Python 来解析该文件 我发现文件中的某些行具有不同的列数 001 Snow Jon 19801201 002 Crom Jake 19920103 003 Wise Frank 19880303 l
  • 是否可以忽略一行的pyright检查?

    我需要忽略一行的pyright 检查 有什么特别的评论吗 def create slog group SLogGroup data Optional dict None SLog insert one SLog group group da
  • Python pickle:腌制对象不等于源对象

    我认为这是预期的行为 但想检查一下 也许找出原因 因为我所做的研究结果是空白 我有一个函数可以提取数据 创建自定义类的新实例 然后将其附加到列表中 该类仅包含变量 然后 我使用协议 2 作为二进制文件将该列表腌制到文件中 稍后我重新运行脚本
  • Flask如何获取请求的HTTP_ORIGIN

    我想用我自己设置的 Access Control Allow Origin 标头做出响应 而弄清楚请求中的 HTTP ORIGIN 参数在哪里似乎很混乱 我在用着烧瓶 0 10 1 以及HTTP ORIGIN似乎是这个的特点之一object
  • Python 的“zip”内置函数的 Ruby 等价物是什么?

    Ruby 是否有与 Python 内置函数等效的东西zip功能 如果不是 做同样事情的简洁方法是什么 一些背景信息 当我试图找到一种干净的方法来进行涉及两个数组的检查时 出现了这个问题 如果我有zip 我可以写这样的东西 zip a b a
  • 在Python中获取文件描述符的位置

    比如说 我有一个原始数字文件描述符 我需要根据它获取文件中的当前位置 import os psutil some code that works with file lp lib open path to file p psutil Pro
  • 无法在 Python 3 中导入 cProfile

    我试图将 cProfile 模块导入 Python 3 3 0 但出现以下错误 Traceback most recent call last File
  • 将图像分割成多个网格

    我使用下面的代码将图像分割成网格的 20 个相等的部分 import cv2 im cv2 imread apple jpg im cv2 resize im 1000 500 imgwidth im shape 0 imgheight i
  • 如何在 Python 中追加到 JSON 文件?

    我有一个 JSON 文件 其中包含 67790 1 kwh 319 4 现在我创建一个字典a dict我需要将其附加到 JSON 文件中 我尝试了这段代码 with open DATA FILENAME a as f json obj js
  • 类型错误:预期单个张量时的张量列表 - 将 const 与 tf.random_normal 一起使用时

    我有以下 TensorFlow 代码 tf constant tf random normal time step batch size 1 1 我正进入 状态TypeError List of Tensors when single Te
  • 有人用过 Dabo 做过中型项目吗? [关闭]

    Closed 这个问题是基于意见的 help closed questions 目前不接受答案 我们正处于一个新的 ERP 风格的客户端 服务器应用程序的开始阶段 该应用程序是作为 Python 富客户端开发的 我们目前正在评估 Dabo
  • 如何计算 pandas 数据帧上的连续有序值

    我试图从给定的数据帧中获取连续 0 值的最大计数 其中包含来自 pandas 数据帧的 id date value 列 如下所示 id date value 354 2019 03 01 0 354 2019 03 02 0 354 201
  • 在 Qt 中自动调整标签文本大小 - 奇怪的行为

    在 Qt 中 我有一个复合小部件 它由排列在 QBoxLayouts 内的多个 QLabels 组成 当小部件调整大小时 我希望标签文本缩放以填充标签区域 并且我已经在 resizeEvent 中实现了文本大小的调整 这可行 但似乎发生了某
  • 使用 Python 的 matplotlib 选择在屏幕上显示哪些图形以及将哪些图形保存到文件中

    我想用Python创建不同的图形matplotlib pyplot 然后 我想将其中一些保存到文件中 而另一些则应使用show 命令 然而 show 显示all创建的数字 我可以通过调用来避免这种情况close 创建我不想在屏幕上显示的绘图
  • 从列表指向字典变量

    假设你有一个清单 a 3 4 1 我想用这些信息来指向字典 b 3 4 1 现在 我需要的是一个常规 看到该值后 在 b 的位置内读写一个值 我不喜欢复制变量 我想直接改变变量b的内容 假设b是一个嵌套字典 你可以这样做 reduce di
  • 如何使用 Pycharm 安装 tkinter? [复制]

    这个问题在这里已经有答案了 I used sudo apt get install python3 6 tk而且效果很好 如果我在终端中打开 python Tkinter 就可以工作 但我无法将其安装在我的 Pycharm 项目上 pip

随机推荐

  • 计算机保存图片找不到桌面,保存的图片在桌面但是找不到。怎么办?

    1win7保存文件找不到桌面 文件有可能被隐藏 2win7保存文件找不到桌面 组策略发生异常 3win7保存文件找不到桌面 保存路径错误 4win7保存文件找不到桌面 explorerwin7保存文件找不到桌面 exe故障 调出 隐藏 文件
  • 设计模式-2.2类之间的6种关系

    1 继承关系 2 实现关系 3 依赖关系 4 关联关系 5 聚合关系 6 组合关系 7 类图建模步骤 1 继承 extends 泛化 在UML中用带空心三角形的实线表示 指向父类 2 实现 implements 类实现接口 可多个 虚线空心
  • 第8章 Stata主成分分析与因子分析

    目录 8 1主成分分析 8 2因子分析 1 主成因子法 2 主因子法 3 迭代公因子方差的主因子法 4 最大似然因子法 在进行数据统计分析时 还往往会遇见变量特别多的情况 而且很多时候这些变量之间还存在着很强的相关关系或者说变量之间存在着很
  • 万字长文深入浅出理解ChatGPT工作原理

    本文转自 原创 万字长文深入浅出理解ChatGPT工作原理 qq com AIGC简要介绍 AIGC是什么 AIGC AI Generated Content AI生成内容 对应我们的过去的主要是 UGC User Generated Co
  • 如何通过Anaconda创建虚拟环境

    做深度学习的同学们应该都受到配置环境的困扰 我也是饱受摧残 本文介绍几个踩过的坑 在anaconda下创建一个虚拟环境 文件名为 pytorch python版本是 3 8 conda create n pytorch python 3 8
  • 【GIT 使用教程 linux 环境】

    1 GIT基本使用 1 linux环境下安装GIT sudo apt get install git 2 全局账号配置 git config global user name yourname git config global user
  • vue v-for循环

    vue v for循环中通过一个变量控制不同的下拉框 默认是全部展开 当点击每个表格的下拉图标 就会显示或隐藏 刚开始做的时候就通过一个变量进行控制 导致点击一个下拉图标就会控制所有有的表格下拉 所以应该是给每个表格对应的集合中加一条属性来
  • autojs常见报错及解决

    autojs常见报错及解决 期待大家在下面评论补充 更多基础加autojs交流群553908361喽 一键加群 点击加群 1 需要在ui模式下运行才能使用该函数 file android asset modules ui js 15 Err
  • Antv/G2 柱状图

    Antv G2 教程 G2 是一套基于图形语法理论的可视化底层引擎 以数据驱动 提供图形语法与交互语法 具有高度的易用性和扩展性 使用 G2 无需关注图表各种繁琐的实现细节 一条语句即可使用 Canvas 或 SVG 构建出各种各样的可交互
  • MacbookPro M1芯片对“cp -r” 命令支持有误,慎重购买

    MacBook2021 M1 MAXPro电脑问题锦集 问题1 开启硬盘加密 开机闪屏 问题详述 在系统偏好设置中 打开安全与隐私 在弹出窗口中切换到第二个页签 文件保险箱 启用文件保险箱功能 然后关机重新启动电脑 在输入密码回车后进度条刚
  • 开发时写TestCase的一些经验

    今天修复完一个业务代码的 bug 手动测试没有问题 但写测试用例出错 在对代码很自信的情况下 因为手动测试过了 我干脆省略了这个步骤 然而偷懒的事情早晚会暴露出来 用 Git 提交到远程时在 Code Review 那里的系统集成测试老是失
  • 【SVM回归预测】基于支持向量机的数据回归预测(libsvm)附matlab代码

    作者简介 热爱科研的Matlab仿真开发者 修心和技术同步精进 matlab项目合作可私信 个人主页 Matlab科研工作室 个人信条 格物致知 更多Matlab仿真内容点击 智能优化算法 神经网络预测 雷达通信
  • 如何处理企业间的人际关系

    如何处理企业之间的人际关系呢 其实这个话题很多人一直都迷茫 包括我在内 我也还没有学会如何处理企业之间的人际关系 这是一门大学问 可惜真正写文章的人没有感受 会写文章的人表达不出来 所以都比较少看到诸类的文章 即使有类似的文章 可是以理论化
  • 说一说xgboost和lightgbm的区别是什么

    前面提到了 LightGBM是Xgboost的更高效实现 由微软发布 XGBoost的并行是在特征粒度上的 我们知道 决策树的学习最耗时的一个步骤就是对特征的值进行排序 因为要确定最佳分割点 XGBoost在训练之前 预先对数据进行了排序
  • JAVA 基础题

    1 面向对象有哪些特征 答 继承 封装 多态 2 JDK与JRE的区别是什么 答 JDK是java开发时所需环境 它包含了Java开发时需要用到的API JRE是Java的运行时环境 JDK包含了JRE 他们是包含关系 3 Java有哪几种
  • Umask的含义

    Umask的含义 umask 022中 022 是八进制的写法 如果换成二进制是000010010 在unix中文件权限是三类用户 三种权限 三类用户分别是文件所有者user u 文件所有者所在主群组group g 其它用户others o
  • Vue脚手架安装和初次使用

    1 安装淘宝镜像 npm config set registry https registry npm taobao org 2 全局安装脚手架 npm install g vue cli 3 切到要创建项目的目录 创建项目 本例选择目录为
  • windows DHCP服务器部署

    目录 一 关于windows dhcp服务器 1 1 关于dhcp 1 2 DHCP续约 二 DHCP服务器部署 2 1 关于DHCP服务器 2 2部署DHCP服务器 2 3 保留特定IP地址 2 4 相关dos命令使用 2 5 多个地址池
  • 如何在Mac OS上从Photoshop 2020作为插件访问Topaz DeNoise AI?

    TopazDeNoise AI for mac是Topaz系列中的一款AI图像降噪软件 topaz denoise ai破解版提供了数百万个噪声 清晰图像的算法 可以快速消除图像中噪音并且保留原始图像细节 人工智能降噪Topaz DeNoi
  • [Python从零到壹] 六十七.图像识别及经典案例篇之基于卷积神经网络的MNIST图像分类

    七月太忙 还是写一篇吧 欢迎大家来到 Python从零到壹 在这里我将分享约200篇Python系列文章 带大家一起去学习和玩耍 看看Python这个有趣的世界 所有文章都将结合案例 代码和作者的经验讲解 真心想把自己近十年的编程经验分享给