Java开发中的23种设计模式详解

2023-11-05

          设计模式(Design Patterns)

                                  ——可复用面向对象软件的基础

设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。本章系Java之美[从菜鸟到高手演变]系列之设计模式,我们会以理论与实践相结合的方式来进行本章的学习,希望广大程序爱好者,学好设计模式,做一个优秀的软件工程师!

在阅读过程中有任何问题,请及时联系:egg。

邮箱:xtfggef@gmail.com 微博:http://weibo.com/xtfggef

如有转载,请说明出处:http://blog.csdn.net/zhangerqing

一、设计模式的分类

总体来说设计模式分为三大类:

创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:

二、设计模式的六大原则

1、开闭原则(Open Close Principle)

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

2、里氏代换原则(Liskov Substitution Principle)

里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科

3、依赖倒转原则(Dependence Inversion Principle)

这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle)

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

5、迪米特法则(最少知道原则)(Demeter Principle)

为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

原则是尽量使用合成/聚合的方式,而不是使用继承。

三、Java的23中设计模式

从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

1、工厂方法模式(Factory Method)

工厂方法模式分为三种:

11、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

举例如下:(我们举一个发送邮件和短信的例子)

首先,创建二者的共同接口:

[java]  view plain copy
  1. public interface Sender {  
  2.     public void Send();  
  3. }  

其次,创建实现类:

[java]  view plain copy
  1. public class MailSender implements Sender {  
  2.     @Override  
  3.     public void Send() {  
  4.         System.out.println("this is mailsender!");  
  5.     }  
  6. }  
[java]  view plain copy
  1. public class SmsSender implements Sender {  
  2.   
  3.     @Override  
  4.     public void Send() {  
  5.         System.out.println("this is sms sender!");  
  6.     }  
  7. }  

最后,建工厂类:

[java]  view plain copy
  1. public class SendFactory {  
  2.   
  3.     public Sender produce(String type) {  
  4.         if ("mail".equals(type)) {  
  5.             return new MailSender();  
  6.         } else if ("sms".equals(type)) {  
  7.             return new SmsSender();  
  8.         } else {  
  9.             System.out.println("请输入正确的类型!");  
  10.             return null;  
  11.         }  
  12.     }  
  13. }  

我们来测试下:

[java]  view plain copy
  1. public class FactoryTest {  
  2.   
  3.     public static void main(String[] args) {  
  4.         SendFactory factory = new SendFactory();  
  5.         Sender sender = factory.produce("sms");  
  6.         sender.Send();  
  7.     }  
  8. }  

输出:this is sms sender!

22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

将上面的代码做下修改,改动下SendFactory类就行,如下:

[java]  view plain copy
  1. public class SendFactory {  
  2.       
  3.     public Sender produceMail(){  
  4.         return new MailSender();  
  5.     }  
  6.       
  7.     public Sender produceSms(){  
  8.         return new SmsSender();  
  9.     }  
  10. }  

测试类如下:

[java]  view plain copy
  1. public class FactoryTest {  
  2.   
  3.     public static void main(String[] args) {  
  4.         SendFactory factory = new SendFactory();  
  5.         Sender sender = factory.produceMail();  
  6.         sender.Send();  
  7.     }  
  8. }  

输出:this is mailsender!

33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

[java]  view plain copy
  1. public class SendFactory {  
  2.       
  3.     public static Sender produceMail(){  
  4.         return new MailSender();  
  5.     }  
  6.       
  7.     public static Sender produceSms(){  
  8.         return new SmsSender();  
  9.     }  
  10. }  
[java]  view plain copy
  1. public class FactoryTest {  
  2.   
  3.     public static void main(String[] args) {      
  4.         Sender sender = SendFactory.produceMail();  
  5.         sender.Send();  
  6.     }  
  7. }  

输出:this is mailsender!

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

2、抽象工厂模式(Abstract Factory)

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

请看例子:

[java]  view plain copy
  1. public interface Sender {  
  2.     public void Send();  
  3. }  

两个实现类:

[java]  view plain copy
  1. public class MailSender implements Sender {  
  2.     @Override  
  3.     public void Send() {  
  4.         System.out.println("this is mailsender!");  
  5.     }  
  6. }  
[java]  view plain copy
  1. public class SmsSender implements Sender {  
  2.   
  3.     @Override  
  4.     public void Send() {  
  5.         System.out.println("this is sms sender!");  
  6.     }  
  7. }  

两个工厂类:

[java]  view plain copy
  1. public class SendMailFactory implements Provider {  
  2.       
  3.     @Override  
  4.     public Sender produce(){  
  5.         return new MailSender();  
  6.     }  
  7. }  
[java]  view plain copy
  1. public class SendSmsFactory implements Provider{  
  2.   
  3.     @Override  
  4.     public Sender produce() {  
  5.         return new SmsSender();  
  6.     }  
  7. }  

在提供一个接口:

[java]  view plain copy
  1. public interface Provider {  
  2.     public Sender produce();  
  3. }  

测试类:

[java]  view plain copy
  1. public class Test {  
  2.   
  3.     public static void main(String[] args) {  
  4.         Provider provider = new SendMailFactory();  
  5.         Sender sender = provider.produce();  
  6.         sender.Send();  
  7.     }  
  8. }  

其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

3、单例模式(Singleton

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

[java]  view plain copy
  1. public class Singleton {  
  2.   
  3.     /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  
  4.     private static Singleton instance = null;  
  5.   
  6.     /* 私有构造方法,防止被实例化 */  
  7.     private Singleton() {  
  8.     }  
  9.   
  10.     /* 静态工程方法,创建实例 */  
  11.     public static Singleton getInstance() {  
  12.         if (instance == null) {  
  13.             instance = new Singleton();  
  14.         }  
  15.         return instance;  
  16.     }  
  17.   
  18.     /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
  19.     public Object readResolve() {  
  20.         return instance;  
  21.     }  
  22. }  


这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

[java]  view plain copy
  1. public static synchronized Singleton getInstance() {  
  2.         if (instance == null) {  
  3.             instance = new Singleton();  
  4.         }  
  5.         return instance;  
  6.     }  

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

[java]  view plain copy
  1. public static Singleton getInstance() {  
  2.         if (instance == null) {  
  3.             synchronized (instance) {  
  4.                 if (instance == null) {  
  5.                     instance = new Singleton();  
  6.                 }  
  7.             }  
  8.         }  
  9.         return instance;  
  10.     }  

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

[java]  view plain copy
  1. private static class SingletonFactory{           
  2.         private static Singleton instance = new Singleton();           
  3.     }           
  4.     public static Singleton getInstance(){           
  5.         return SingletonFactory.instance;           
  6.     }   

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

[java]  view plain copy
  1. public class Singleton {  
  2.   
  3.     /* 私有构造方法,防止被实例化 */  
  4.     private Singleton() {  
  5.     }  
  6.   
  7.     /* 此处使用一个内部类来维护单例 */  
  8.     private static class SingletonFactory {  
  9.         private static Singleton instance = new Singleton();  
  10.     }  
  11.   
  12.     /* 获取实例 */  
  13.     public static Singleton getInstance() {  
  14.         return SingletonFactory.instance;  
  15.     }  
  16.   
  17.     /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
  18.     public Object readResolve() {  
  19.         return getInstance();  
  20.     }  
  21. }  

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

[java]  view plain copy
  1. public class SingletonTest {  
  2.   
  3.     private static SingletonTest instance = null;  
  4.   
  5.     private SingletonTest() {  
  6.     }  
  7.   
  8.     private static synchronized void syncInit() {  
  9.         if (instance == null) {  
  10.             instance = new SingletonTest();  
  11.         }  
  12.     }  
  13.   
  14.     public static SingletonTest getInstance() {  
  15.         if (instance == null) {  
  16.             syncInit();  
  17.         }  
  18.         return instance;  
  19.     }  
  20. }  

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

补充:采用"影子实例"的办法为单例对象的属性同步更新

[java]  view plain copy
  1. public class SingletonTest {  
  2.   
  3.     private static SingletonTest instance = null;  
  4.     private Vector properties = null;  
  5.   
  6.     public Vector getProperties() {  
  7.         return properties;  
  8.     }  
  9.   
  10.     private SingletonTest() {  
  11.     }  
  12.   
  13.     private static synchronized void syncInit() {  
  14.         if (instance == null) {  
  15.             instance = new SingletonTest();  
  16.         }  
  17.     }  
  18.   
  19.     public static SingletonTest getInstance() {  
  20.         if (instance == null) {  
  21.             syncInit();  
  22.         }  
  23.         return instance;  
  24.     }  
  25.   
  26.     public void updateProperties() {  
  27.         SingletonTest shadow = new SingletonTest();  
  28.         properties = shadow.getProperties();  
  29.     }  
  30. }  

通过单例模式的学习告诉我们:

1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

4、建造者模式(Builder)

工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:

还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:

[java]  view plain copy
  1. public class Builder {  
  2.       
  3.     private List<Sender> list = new ArrayList<Sender>();  
  4.       
  5.     public void produceMailSender(int count){  
  6.         for(int i=0; i<count; i++){  
  7.             list.add(new MailSender());  
  8.         }  
  9.     }  
  10.       
  11.     public void produceSmsSender(int count){  
  12.         for(int i=0; i<count; i++){  
  13.             list.add(new SmsSender());  
  14.         }  
  15.     }  
  16. }  

测试类:

[java]  view plain copy
  1. public class Test {  
  2.   
  3.     public static void main(String[] args) {  
  4.         Builder builder = new Builder();  
  5.         builder.produceMailSender(10);  
  6.     }  
  7. }  

从这点看出,建造者模式将很多功能集成到一个类里,这个类可以创造出比较复杂的东西。所以与工程模式的区别就是:工厂模式关注的是创建单个产品,而建造者模式则关注创建符合对象,多个部分。因此,是选择工厂模式还是建造者模式,依实际情况而定。

5、原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

[java]  view plain copy
  1. public class Prototype implements Cloneable {  
  2.   
  3.     public Object clone() throws CloneNotSupportedException {  
  4.         Prototype proto = (Prototype) super.clone();  
  5.         return proto;  
  6.     }  
  7. }  

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

此处,写一个深浅复制的例子:

[java]  view plain copy
  1. public class Prototype implements Cloneable, Serializable {  
  2.   
  3.     private static final long serialVersionUID = 1L;  
  4.     private String string;  
  5.   
  6.     private SerializableObject obj;  
  7.   
  8.     /* 浅复制 */  
  9.     public Object clone() throws CloneNotSupportedException {  
  10.         Prototype proto = (Prototype) super.clone();  
  11.         return proto;  
  12.     }  
  13.   
  14.     /* 深复制 */  
  15.     public Object deepClone() throws IOException, ClassNotFoundException {  
  16.   
  17.         /* 写入当前对象的二进制流 */  
  18.         ByteArrayOutputStream bos = new ByteArrayOutputStream();  
  19.         ObjectOutputStream oos = new ObjectOutputStream(bos);  
  20.         oos.writeObject(this);  
  21.   
  22.         /* 读出二进制流产生的新对象 */  
  23.         ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());  
  24.         ObjectInputStream ois = new ObjectInputStream(bis);  
  25.         return ois.readObject();  
  26.     }  
  27.   
  28.     public String getString() {  
  29.         return string;  
  30.     }  
  31.   
  32.     public void setString(String string) {  
  33.         this.string = string;  
  34.     }  
  35.   
  36.     public SerializableObject getObj() {  
  37.         return obj;  
  38.     }  
  39.   
  40.     public void setObj(SerializableObject obj) {  
  41.         this.obj = obj;  
  42.     }  
  43.   
  44. }  
  45.   
  46. class SerializableObject implements Serializable {  
  47.     private static final long serialVersionUID = 1L;  
  48. }  

要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。

由于文章篇幅较长,为了更好的方便读者阅读,我将接下了的其它介绍放在另一篇文章中(也许会分两篇来),感谢大家提出宝贵的意见和建议!


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Java开发中的23种设计模式详解 的相关文章

  • Spring源码学习之BeanDefinition源码解析

    本文作者 磊叔 GLMapper本文链接 https juejin cn post 6844903553820000269 Bean的定义主要由BeanDefinition来描述的 作为Spring中用于包装Bean的数据结构 今天就来看看
  • Java复习-25-单例设计模式

    单例设计模式 目的 使用场景 在实际开发下 会存在一种情况 某一种类在程序的整个生命周期中 只需要实例化一次就足够了 例如 系统数据类 由于操作系统只有一个 因此在程序初始化时该类只需要实例化一次 之后的系统数据更改都是在这一个实例化对象中
  • 设计模式的 C++ 实现---原型模式

    前文回顾 单例模式 一 单例模式 二 观察者模式 简单工厂模式 工厂方法模式 一 工厂方法模式 二 抽象工厂模式 一 抽象工厂模式 二 前言 原型模式指直接用一个已经存在的对象来创建一个新的对象 然后对新对象进行稍微修改即可 类似复制的操作
  • 设计模式——原型模式

    原型模式顾名思义 就是指以某个实例为原型 copy出一个新的实例 该实例属性与原型相同或者是类似 很多时候 我们需要创建大量的相同或者相似的对象 如果一个个用new 构造函数的形式去创建的话比较繁琐 就像孙悟空要想变出成千上万个猴子猴孙总不
  • 小谈设计模式(1)—总序

    小谈设计模式 1 总序 专栏地址 开始操作 设计模式总论 设计模式是什么 组成要素 模式名称 问题描述 解决方案 效果描述 设计模式有什么作用 提供可重用的解决方案 提高代码的可读性和可维护性 促进代码的可扩展性 提高代码的灵活性和可重用性
  • 设计模式之享元模式

    一 背景 在面向对象程序设计过程中 有时会面临要创建大量相同或相似对象实例的问题 创建那么多的对象将会耗费很多的系统资源 它是系统性能提高的一个瓶颈 例如 围棋和五子棋中的黑白棋子 图像中的坐标点或颜色 局域网中的路由器 交换机和集线器 教
  • 行为型模式-状态模式

    package per mjn pattern state after 环境角色类 public class Context 定义对应状态对象的常量 public final static OpeningState OPENING STAT
  • 设计模式七大原则

    1 设计模式的目的 编写软件过程中 程序员面临着来自耦合性 内聚性以及可维护性 可扩展性 重用性 灵活性 等多方面的挑战 设计模式是为了让程序 软件 具有更好 1 代码重用性 即 相同功能的代码 不用多次编写 2 可读性 即 编程规范性 便
  • 设计模式-2--工厂模式(Factory Pattern)

    一 什么是工厂模式 工厂模式 Factory Pattern 是一种创建型设计模式 它提供了一种创建对象的接口 但是将对象的实例化过程推迟到子类中 工厂模式允许通过调用一个共同的接口方法来创建不同类型的对象 而无需暴露对象的实例化逻辑 工厂
  • 分享几个项目中用到的设计模式

    前言 之前项目中出于扩展性和有雅性的考虑 使用了多种设计模式进行项目框架的设计 主要的一些设计模式是单例模式 工厂模式 策略模式 责任链模式 代理模式这几种 现在依次讲讲这几个的主要是实现方式和在我们项目中的应用场景 核心设计模式分享 单例
  • 设计模式--提供者模式provider

    设计模式 C 提供者模式 Provider Pattern 介绍 为一个API进行定义和实现的分离 示例 有一个Message实体类 对它的操作有Insert 和Get 方法 持久化数据在SqlServer数据库中或Xml文件里 根据配置文
  • linux内核中的设计模式

    创建型 Object Pool Object Pool模式可以提升性能 尤其是在对象的分配 初始化成本高 使用频率高 但使用时间短的情况下 对象池可以设置对象池的大小和回收时间缓存预分配的对象 NT和Linux都有简单的预分配缓存对象的机制
  • 单例模式的八种写法比较

    单例模式是最常用到的设计模式之一 熟悉设计模式的朋友对单例模式都不会陌生 一般介绍单例模式的书籍都会提到 饿汉式 和 懒汉式 这两种实现方式 但是除了这两种方式 本文还会介绍其他几种实现单例的方式 让我们来一起看看吧 简介 单例模式是一种常
  • 设计模式之享元模式

    享元模式 就是共享技术 对于系统中存在大量相同的对象 把他们抽取成一个对象放在缓存中进行使用 这样可以大大节省系统资源 例如 围棋棋盘上有两种棋子 一个是黑子 一个是白子 如果在下棋的时候每下一个棋子就要new一个棋子对象 那么就会有大量的
  • Tomcat 系统架构与设计模式之工作原理篇

    本文以 Tomcat 5 为基础 也兼顾最新的 Tomcat 6 和 Tomcat 4 Tomcat 的基本设计思路和架构是具有一定连续性的 Tomcat 总体结构 Tomcat 的结构很复杂 但是 Tomcat 也非常的模块化 找到了 T
  • 设计模式-享元模式

    一 概念 如果在一个系统中存在多个相同的对象 那么只需要共享一份对象的拷贝 而不必为每一次使用都创建新的对象 目的是提高系统性能 上面的概念乍一听好像单例模式其实不是 单例模式只保存一个对象 但是这里可以有很多个不同对象 但是每个对象只有一
  • JavaScript设计模式-02-单例模式

    Javascript 设计模式 02 单例模式 简介 单例就是保证一个类只有一个实例 实现的方法一般是先判断实例是否存在 如果存在直接返回 如果不存在就创建了再返回 确保了一个类只有一个实例对象 在JavaScript里 单例作为一个命名空
  • 设计模式详解---策略模式

    1 策略模式简介 策略模式 Strategy Pattern 是一种行为型设计模式 用于在运行时根据不同的情境选择不同的算法或策略 该模式将算法封装成独立的类 使得它们可以相互替换 而且可以独立于客户端使用它们的方式 1 1 主要角色 上下
  • 在AI技术的无情侵袭下,学学Java的23种设计模式还是非常有必要的

    目前国内80 程序员的主要工作是调用组合api实现各种业务需求 在顶层架构师设定好的框架下 做着重复且无聊的编码工作 如果未来ai被广泛应用 那么被替代的风险是很高的 比较扎心的是 其实目前用ai生成片段代码已经是各个公司比较普遍的做法了
  • 系列一、 单例设计模式

    一 单例设计模式 1 1 概述 单例模式 Singleton Pattern 是Java中最简单的设计模式之一 这种类型的设计模式属于创建者模式 它提供了一种创建对象的最佳方式 这种模式涉及到一个单一的类 该类负责创建自己的对象 同时确保只

随机推荐

  • JZOJ 幽幽子与森林

    题目大意 迷途竹林可以看成是一个n个点的森林 幽幽子定义dis u v 为u到v路径上的边的数量 若u和v不连通则为m 她定义整个森林的危险度为 为了去拜访永琳师匠 幽幽子需要提前知道迷途竹林的危险度 但迷途竹林的形态是时刻变化着的 所以幽
  • 栈系列之 最小栈的实现

    算法专题导航页面 算法专题 栈 栈系列之 栈排序 栈系列之 最小栈的实现 栈系列之 用栈实现队列 栈系列之 递归实现一个栈的逆序 题目 设计一个栈 其拥有常规的入栈 出栈操作外 需要额外具备获取最小元素的功能 其他限制 获取最小元素功能的时
  • 25. TCP协议之TCP中MSS与MTU

    MSS MSS英文全称为Maximum Segment Size 表示最大TCP报文段数据长度 并且MSS只会出现在对端发送SYN段时才会夹带的信息 在三次握手的过程中可以看到这个对端期望能够收到最大的数据段长度 如下 可以看到现在对端的M
  • 阿里云服务器部署node服务(一)

    万事开头难 尝试通过阿里云服务器部署node服务 中间踩了一些坑 借此给自己一个总结 1 远程服务器安装node 1 安装node wget https npmmirror com mirrors node v16 16 0 node v1
  • kafka介绍,安装以及简单的java调用kafka代码

    Producer 消息生产者 向broker发消息的客户端 Consumer 消息消费者 向broker取消息的客户端 Topic 一个队列 主题 Message 消息是kafka处理的对象 在kafka中 消息是被发布到broker的to
  • 【R】【纽约人口数量分析】

    文章目录 1 实验说明 2 实验环境 3 实验目的 4 实验内容 5 实验步骤 下载并导入数据 对生成的时间序列对象可视化 a 思考 b 由上述三种变量查看各个波动趋势数据 c 由上述结果可知 使用 plot 函数 修正数据 6 实验分析
  • Cadence学习六:ORCAD里怎么增加和删除Offpage connector

    ORCAD里怎么增加和删除Offpage connector 注 本文是个人再学习cadence17 4的时候遇到的问题小结 任何人不得商用 如有侵权 请联系本人删除 问题概述 对于ORCAD有多个页面的原理图 off page担当着在不同
  • error: C2248: “QObject::QObject”: 无法访问 private 成员(在“QObject”类中声明)

    QT中使用的C 对象经常会用到数据类 而存放数据可以选择使用QList lt gt QMap lt gt 等模板类存放指针或是对象 如果是选择存数据对象 考虑好之后的数据最好是静态访问的 很少去修改的 在存放的时候就会报上面的错误 原因是没
  • 各种通信接口的简单对比

    对比表 同步方式与异步方式的主要区别在于 是否传输时钟信号 只要是通訊前雙方需要設定相同波特率的 都是異步傳輸方式 异步传输 Asynchronous Transmission 每次异步传输的信息都以一个起始位开头 它通知接收方数据已经到达
  • 微服务之间调用的异常应该如何处理

    前言 在分布式服务的场景下 业务服务都将进行拆分 不同服务之间都会相互调用 如何做好异常处理是比较关键的 可以让业务人员在页面使用系统报错后 很清楚的看到服务报错的原因 而不是返回代码级别的异常报错 比如NullException Ille
  • datetime 模块详解 -- 基本的日期和时间类型

    转自 https www cnblogs com fclbky articles 4098204 html datetime 模块提供了各种类用于操作日期和时间 该模块侧重于高效率的格式化输出在 Python 中 与时间处理有关的模块包括
  • 6-11 删除字符 (20 分)

    本题要求实现一个删除字符串中的指定字符的简单函数 函数接口定义 void delchar char str char c 其中char str是传入的字符串 c是待删除的字符 函数delchar的功能是将字符串str中出现的所有c字符删除
  • Nginx+FastCGI参数传递

    如果需要将需要将各种参数传递到fcgi 例如传递请求参数 请求方法等到fcgi 需要在nginx中加配置 location fcgi fastcgi pass ip port fastcgi param QUERY STRING query
  • 汉诺塔的相关应用

    汉诺塔的应用 是递归的一种比较例子 题目藐视见下面 就是一个递归的实现 先把a上的n 1个盘同过c移到b 再把a上的最后一只盘移到c 随后再把b上的n 1只盘通过a 移到c 描述就是这样 include
  • 两个接口和一个类的适配器模式

    适配器类实现其中一个接口方法 创建另一个接口的对象和构造方法 在接口方法中调用另一个接口的方法 实例如下 public class shipeiqi public static void main String args ATable aT
  • 基于神经网络的目标检测论文之DenseNet:密集连接的卷积神经网络

    第三章 基于密集连接卷积网络改进的目标分类算法 最近的研究表明 如果卷积网络包含接近输入的层和接近输出的层之间的较短连接 则卷积网络可以更深入 更精确和更有效地进行训练 在本章中 论文首先研究密集卷积网络 DenseNet 的结构和工作原理
  • USB转RS485串口电路设计

    USB转串口芯片的串口信号一般为 TTL CMOS电平 在实现半双工 RS485 串口时需要外接485电平转换芯片 设计中需要有信号来控制 485 转接芯片的发送和接收使能端 建议选择自带485控制引脚的转接芯片 如 CH340 CH342
  • MybatisPlus中removeById删除数据库未变

    removeById Serializable id 传入的是id Integer Long等 不是实体对象 就是对应你表的主键 由于我刚开始建表时未设置主键mybatisplus自动生成未在实体类表中标注主键 后加了主键 所以需在实体类主
  • 各种遥感数据,地理信息数据共享网站

    各种遥感数据 地理信息数据共享网站 至少一百 Online Global Satellite Image and Atlas http library gmu edu resources sci Geog579 htm 可以下载Aster
  • Java开发中的23种设计模式详解

    设计模式 Design Patterns 可复用面向对象软件的基础 设计模式 Design pattern 是一套被反复使用 多数人知晓的 经过分类编目的 代码设计经验的总结 使用设计模式是为了可重用代码 让代码更容易被他人理解 保证代码可