java NIO

2023-11-05

概述

NIO主要有三大核心部分:

  • Channel(通道)
  • Buffer(缓冲区),
  • Selector(选择器)

NIO 与 IO的区别

  • IO是面向流的,NIO是面向缓冲区的。 Java IO面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。

  • IO基于字节流和字符流进行操作,NIO基于Channel和Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。

  • IO不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

  • IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了; NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变得可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

channel

首先说一下Channel,国内大多翻译成“通道”。Channel和IO中的Stream(流)是差不多一个等级的。只不过Stream是单向的,譬如:InputStream, OutputStream.而Channel是双向的,既可以用来进行读操作,又可以用来进行写操作。
NIO中的Channel的主要实现有:

  • FileChannel

  • DatagramChannel

  • SocketChannel

  • ServerSocketChannel

这里看名字就可以猜出个所以然来:分别可以对应文件IO、UDP和TCP(Server和Client)。下面演示的案例基本上就是围绕这4个类型的Channel进行陈述的。

buffer

NIO中的关键Buffer实现有:ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, ShortBuffer,分别对应基本数据类型: byte, char, double, float, int, long, short。当然NIO中还有MappedByteBuffer, HeapByteBuffer, DirectByteBuffer等这里先不进行陈述。

Selector

Selector运行单线程处理多个Channel,如果你的应用打开了多个通道,但每个连接的流量都很低,使用Selector就会很方便。例如在一个聊天服务器中。要使用Selector, 得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新的连接进来、数据接收等。

FileChannel

看完上面的陈述,对于第一次接触NIO的同学来说云里雾里,只说了一些概念,也没记住什么,更别说怎么用了。这里开始通过传统IO以及更改后的NIO来做对比,以更形象的突出NIO的用法,进而使你对NIO有一点点的了解。

传统IO vs NIO
首先,案例1是采用FileInputStream读取文件内容的:

public static void method2(){
        InputStream in = null;
        try{
            in = new BufferedInputStream(new FileInputStream("src/nomal_io.txt"));
            byte [] buf = new byte[1024];
            int bytesRead = in.read(buf);
            while(bytesRead != -1)
            {
                for(int i=0;i<bytesRead;i++)
                    System.out.print((char)buf[i]);
                bytesRead = in.read(buf);
            }
        }catch (IOException e)
        {
            e.printStackTrace();
        }finally{
            try{
                if(in != null){
                    in.close();
                }
            }catch (IOException e){
                e.printStackTrace();
            }
        }
    }

输出结果:(略)

案例2是对应的NIO(这里通过RandomAccessFile进行操作,当然也可以通过FileInputStream.getChannel()进行操作):

public static void method1(){
        RandomAccessFile aFile = null;
        try{
            aFile = new RandomAccessFile("src/nio.txt","rw");
            FileChannel fileChannel = aFile.getChannel();
            ByteBuffer buf = ByteBuffer.allocate(1024);
            int bytesRead = fileChannel.read(buf);
            System.out.println(bytesRead);
            while(bytesRead != -1)
            {
                buf.flip();
                while(buf.hasRemaining())
                {
                    System.out.print((char)buf.get());
                }
                buf.compact();
                bytesRead = fileChannel.read(buf);
            }
        }catch (IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(aFile != null){
                    aFile.close();
                }
            }catch (IOException e){
                e.printStackTrace();
            }
        }
    }

输出结果:(略)
通过仔细对比案例1和案例2,应该能看出个大概,最起码能发现NIO的实现方式比叫复杂。有了一个大概的印象可以进入下一步了。

buffer 的作用

从案例2中可以总结出使用Buffer一般遵循下面几个步骤:

  1. 分配空间(ByteBuffer buf = ByteBuffer.allocate(1024); 还有一种allocateDirector后面再陈述)

  2. 写入数据到Buffer(int bytesRead = fileChannel.read(buf)?

  3. 调用filp()方法( buf.flip();)

  4. 从Buffer中读取数据(System.out.print((char)buf.get());)

  5. 调用clear()方法或者compact()方法

Buffer顾名思义:缓冲区,实际上是一个容器,一个连续数组。Channel提供从文件、网络读取数据的渠道,但是读写的数据都必须经过Buffer。如下图:
在这里插入图片描述
向Buffer中写数据:

  • 从Channel写到Buffer (fileChannel.read(buf))

  • 通过Buffer的put()方法 (buf.put(…))

从Buffer中读取数据:

  • 从Buffer读取到Channel (channel.write(buf))

  • 使用get()方法从Buffer中读取数据 (buf.get())

可以把Buffer简单地理解为一组基本数据类型的元素列表,它通过几个变量来保存这个数据的当前位置状态:capacity, position, limit, mark:

索引 说明
capacity 缓冲区数组的总长度
position 下一个要操作的数据元素的位置
limit 缓冲区数组中不可操作的下一个元素的位置:limit<=capacity
mark 用于记录当前position的前一个位置或者默认是-1

在这里插入图片描述
无图无真相,举例:我们通过ByteBuffer.allocate(11)方法创建了一个11个byte的数组的缓冲区,初始状态如上图,position的位置为0,capacity和limit默认都是数组长度。当我们写入5个字节时,变化如下图:

在这里插入图片描述

这时我们需要将缓冲区中的5个字节数据写入Channel的通信信道,所以我们调用ByteBuffer.flip()方法,变化如下图所示(position设回0,并将limit设成之前的position的值):

在这里插入图片描述

这时底层操作系统就可以从缓冲区中正确读取这个5个字节数据并发送出去了。在下一次写数据之前我们再调用clear()方法,缓冲区的索引位置又回到了初始位置。

调用clear()方法:position将被设回0,limit设置成capacity,换句话说,Buffer被清空了,其实Buffer中的数据并未被清除,只是这些标记告诉我们可以从哪里开始往Buffer里写数据。如果Buffer中有一些未读的数据,调用clear()方法,数据将“被遗忘”,意味着不再有任何标记会告诉你哪些数据被读过,哪些还没有。如果Buffer中仍有未读的数据,且后续还需要这些数据,但是此时想要先写些数据,那么使用compact()方法。compact()方法将所有未读的数据拷贝到Buffer起始处。然后将position设到最后一个未读元素正后面。limit属性依然像clear()方法一样,设置成capacity。现在Buffer准备好写数据了,但是不会覆盖未读的数据。

通过调用Buffer.mark()方法,可以标记Buffer中的一个特定的position,之后可以通过调用Buffer.reset()方法恢复到这个position。Buffer.rewind()方法将position设回0,所以你可以重读Buffer中的所有数据。limit保持不变,仍然表示能从Buffer中读取多少个元素。

SocketChannel

说完了FileChannel和Buffer, 大家应该对Buffer的用法比较了解了,这里使用SocketChannel来继续探讨NIO。NIO的强大功能部分来自于Channel的非阻塞特性,套接字的某些操作可能会无限期地阻塞。例如,对accept()方法的调用可能会因为等待一个客户端连接而阻塞;对read()方法的调用可能会因为没有数据可读而阻塞,直到连接的另一端传来新的数据。总的来说,创建/接收连接或读写数据等I/O调用,都可能无限期地阻塞等待,直到底层的网络实现发生了什么。慢速的,有损耗的网络,或仅仅是简单的网络故障都可能导致任意时间的延迟。然而不幸的是,在调用一个方法之前无法知道其是否阻塞。NIO的channel抽象的一个重要特征就是可以通过配置它的阻塞行为,以实现非阻塞式的信道。

 channel.configureBlocking(false)

在非阻塞式信道上调用一个方法总是会立即返回。这种调用的返回值指示了所请求的操作完成的程度。例如,在一个非阻塞式ServerSocketChannel上调用accept()方法,如果有连接请求来了,则返回客户端SocketChannel,否则返回null。

这里先举一个TCP应用案例,客户端采用NIO实现,而服务端依旧使用BIO实现。
客户端代码(案例3):

public static void client(){
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        SocketChannel socketChannel = null;
        try
        {
            socketChannel = SocketChannel.open();
            socketChannel.configureBlocking(false);
            socketChannel.connect(new InetSocketAddress("10.10.195.115",8080));
            if(socketChannel.finishConnect())
            {
                int i=0;
                while(true)
                {
                    TimeUnit.SECONDS.sleep(1);
                    String info = "I'm "+i+++"-th information from client";
                    buffer.clear();
                    buffer.put(info.getBytes());
                    buffer.flip();
                    while(buffer.hasRemaining()){
                        System.out.println(buffer);
                        socketChannel.write(buffer);
                    }
                }
            }
        }
        catch (IOException | InterruptedException e)
        {
            e.printStackTrace();
        }
        finally{
            try{
                if(socketChannel!=null){
                    socketChannel.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }

服务端代码(案例4):

public static void server(){
        ServerSocket serverSocket = null;
        InputStream in = null;
        try
        {
            serverSocket = new ServerSocket(8080);
            int recvMsgSize = 0;
            byte[] recvBuf = new byte[1024];
            while(true){
                Socket clntSocket = serverSocket.accept();
                SocketAddress clientAddress = clntSocket.getRemoteSocketAddress();
                System.out.println("Handling client at "+clientAddress);
                in = clntSocket.getInputStream();
                while((recvMsgSize=in.read(recvBuf))!=-1){
                    byte[] temp = new byte[recvMsgSize];
                    System.arraycopy(recvBuf, 0, temp, 0, recvMsgSize);
                    System.out.println(new String(temp));
                }
            }
        }
        catch (IOException e)
        {
            e.printStackTrace();
        }
        finally{
            try{
                if(serverSocket!=null){
                    serverSocket.close();
                }
                if(in!=null){
                    in.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }

输出结果:(略)

根据案例分析,总结一下SocketChannel的用法。
打开SocketChannel:

 socketChannel = SocketChannel.open();
 socketChannel.connect(new InetSocketAddress("10.10.195.115",8080));

关闭:

            socketChannel.close();

读取数据:

                    String info = "I'm "+i+++"-th information from client";
                    buffer.clear();
                    buffer.put(info.getBytes());
                    buffer.flip();
                    while(buffer.hasRemaining()){
                        System.out.println(buffer);
                        socketChannel.write(buffer);
                    }

注意SocketChannel.write()方法的调用是在一个while循环中的。write()方法无法保证能写多少字节到SocketChannel。所以,我们重复调用write()直到Buffer没有要写的字节为止。
非阻塞模式下,read()方法在尚未读取到任何数据时可能就返回了。所以需要关注它的int返回值,它会告诉你读取了多少字节。

TCP服务端的NIO写法

到目前为止,所举的案例中都没有涉及Selector。不要急,好东西要慢慢来。Selector类可以用于避免使用阻塞式客户端中很浪费资源的“忙等”方法。例如,考虑一个IM服务器。像QQ或者旺旺这样的,可能有几万甚至几千万个客户端同时连接到了服务器,但在任何时刻都只是非常少量的消息。

需要读取和分发。这就需要一种方法阻塞等待,直到至少有一个信道可以进行I/O操作,并指出是哪个信道。NIO的选择器就实现了这样的功能。一个Selector实例可以同时检查一组信道的I/O状态。用专业术语来说,选择器就是一个多路开关选择器,因为一个选择器能够管理多个信道上的I/O操作。然而如果用传统的方式来处理这么多客户端,使用的方法是循环地一个一个地去检查所有的客户端是否有I/O操作,如果当前客户端有I/O操作,则可能把当前客户端扔给一个线程池去处理,如果没有I/O操作则进行下一个轮询,当所有的客户端都轮询过了又接着从头开始轮询;这种方法是非常笨而且也非常浪费资源,因为大部分客户端是没有I/O操作,我们也要去检查;而Selector就不一样了,它在内部可以同时管理多个I/O,当一个信道有I/O操作的时候,他会通知Selector,Selector就是记住这个信道有I/O操作,并且知道是何种I/O操作,是读呢?是写呢?还是接受新的连接;所以如果使用Selector,它返回的结果只有两种结果,一种是0,即在你调用的时刻没有任何客户端需要I/O操作,另一种结果是一组需要I/O操作的客户端,这时你就根本不需要再检查了,因为它返回给你的肯定是你想要的。这样一种通知的方式比那种主动轮询的方式要高效得多!

要使用选择器(Selector),需要创建一个Selector实例(使用静态工厂方法open())并将其注册(register)到想要监控的信道上(注意,这要通过channel的方法实现,而不是使用selector的方法)。最后,调用选择器的select()方法。该方法会阻塞等待,直到有一个或更多的信道准备好了I/O操作或等待超时。select()方法将返回可进行I/O操作的信道数量。现在,在一个单独的线程中,通过调用select()方法就能检查多个信道是否准备好进行I/O操作。如果经过一段时间后仍然没有信道准备好,select()方法就会返回0,并允许程序继续执行其他任务。

下面将上面的TCP服务端代码改写成NIO的方式(案例5):

public class ServerConnect
{
    private static final int BUF_SIZE=1024;
    private static final int PORT = 8080;
    private static final int TIMEOUT = 3000;
    public static void main(String[] args)
    {
        selector();
    }
    public static void handleAccept(SelectionKey key) throws IOException{
        ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
        SocketChannel sc = ssChannel.accept();
        sc.configureBlocking(false);
        sc.register(key.selector(), SelectionKey.OP_READ,ByteBuffer.allocateDirect(BUF_SIZE));
    }
    public static void handleRead(SelectionKey key) throws IOException{
        SocketChannel sc = (SocketChannel)key.channel();
        ByteBuffer buf = (ByteBuffer)key.attachment();
        long bytesRead = sc.read(buf);
        while(bytesRead>0){
            buf.flip();
            while(buf.hasRemaining()){
                System.out.print((char)buf.get());
            }
            System.out.println();
            buf.clear();
            bytesRead = sc.read(buf);
        }
        if(bytesRead == -1){
            sc.close();
        }
    }
    public static void handleWrite(SelectionKey key) throws IOException{
        ByteBuffer buf = (ByteBuffer)key.attachment();
        buf.flip();
        SocketChannel sc = (SocketChannel) key.channel();
        while(buf.hasRemaining()){
            sc.write(buf);
        }
        buf.compact();
    }
    public static void selector() {
        Selector selector = null;
        ServerSocketChannel ssc = null;
        try{
            selector = Selector.open();
            ssc= ServerSocketChannel.open();
            ssc.socket().bind(new InetSocketAddress(PORT));
            ssc.configureBlocking(false);
            ssc.register(selector, SelectionKey.OP_ACCEPT);
            while(true){
                if(selector.select(TIMEOUT) == 0){
                    System.out.println("==");
                    continue;
                }
                Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
                while(iter.hasNext()){
                    SelectionKey key = iter.next();
                    if(key.isAcceptable()){
                        handleAccept(key);
                    }
                    if(key.isReadable()){
                        handleRead(key);
                    }
                    if(key.isWritable() && key.isValid()){
                        handleWrite(key);
                    }
                    if(key.isConnectable()){
                        System.out.println("isConnectable = true");
                    }
                    iter.remove();
                }
            }
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(selector!=null){
                    selector.close();
                }
                if(ssc!=null){
                    ssc.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }
}

下面来慢慢讲解这段代码。

ServerSocketChannel

打开ServerSocketChannel:

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

关闭ServerSocketChannel:

serverSocketChannel.close();

监听新进来的连接:

while(true){
    SocketChannel socketChannel = serverSocketChannel.accept();
}

ServerSocketChannel可以设置成非阻塞模式。在非阻塞模式下,accept() 方法会立刻返回,如果还没有新进来的连接,返回的将是null。 因此,需要检查返回的SocketChannel是否是null.如:

 		ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.socket().bind(new InetSocketAddress(9999));
        serverSocketChannel.configureBlocking(false);
        while (true)
        {
            SocketChannel socketChannel = serverSocketChannel.accept();
            if (socketChannel != null)
            {
                // do something with socketChannel...
            }
        }

Selector

Selector的创建:Selector selector = Selector.open();

为了将Channel和Selector配合使用,必须将Channel注册到Selector上,通过SelectableChannel.register()方法来实现,沿用案例5中的部分代码:

 			ssc= ServerSocketChannel.open();
            ssc.socket().bind(new InetSocketAddress(PORT));
            ssc.configureBlocking(false);
            ssc.register(selector, SelectionKey.OP_ACCEPT);

与Selector一起使用时,Channel必须处于非阻塞模式下。这意味着不能将FileChannel与Selector一起使用,因为FileChannel不能切换到非阻塞模式。而套接字通道都可以。

注意register()方法的第二个参数。这是一个“interest集合”,意思是在通过Selector监听Channel时对什么事件感兴趣。可以监听四种不同类型的事件:

1. Connect
2. Accept
3. Read
4. Write

通道触发了一个事件意思是该事件已经就绪。所以,某个channel成功连接到另一个服务器称为“连接就绪”。一个server socket channel准备好接收新进入的连接称为“接收就绪”。一个有数据可读的通道可以说是“读就绪”。等待写数据的通道可以说是“写就绪”。

这四种事件用SelectionKey的四个常量来表示:

1. SelectionKey.OP_CONNECT
2. SelectionKey.OP_ACCEPT
3. SelectionKey.OP_READ
4. SelectionKey.OP_WRITE

SelectionKey

当向Selector注册Channel时,register()方法会返回一个SelectionKey对象。这个对象包含了一些你感兴趣的属性:

  • interest集合

  • ready集合

  • Channel

  • Selector

附加的对象(可选)

interest集合:就像向Selector注册通道一节中所描述的,interest集合是你所选择的感兴趣的事件集合。可以通过SelectionKey读写interest集合。

ready 集合是通道已经准备就绪的操作的集合。在一次选择(Selection)之后,你会首先访问这个ready set。Selection将在下一小节进行解释。可以这样访问ready集合:

int readySet = selectionKey.readyOps();

可以用像检测interest集合那样的方法,来检测channel中什么事件或操作已经就绪。但是,也可以使用以下四个方法,它们都会返回一个布尔类型:

selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();

从SelectionKey访问Channel和Selector很简单。如下:

Channel  channel  = selectionKey.channel();
Selector selector = selectionKey.selector();

可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。使用方法如下:

selectionKey.attach(theObject);
Object attachedObj = selectionKey.attachment();

还可以在用register()方法向Selector注册Channel的时候附加对象。如:

SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);

通过Selector选择通道

一旦向Selector注册了一或多个通道,就可以调用几个重载的select()方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道。换句话说,如果你对“读就绪”的通道感兴趣,select()方法会返回读事件已经就绪的那些通道。

下面是select()方法:

  • int select()
  • int select(long timeout)
  • int selectNow()

select()阻塞到至少有一个通道在你注册的事件上就绪了。
select(long timeout)和select()一样,除了最长会阻塞timeout毫秒(参数)。
selectNow()不会阻塞,不管什么通道就绪都立刻返回(译者注:此方法执行非阻塞的选择操作。如果自从前一次选择操作后,没有通道变成可选择的,则此方法直接返回零。)。

select()方法返回的int值表示有多少通道已经就绪。亦即,自上次调用select()方法后有多少通道变成就绪状态。如果调用select()方法,因为有一个通道变成就绪状态,返回了1,若再次调用select()方法,如果另一个通道就绪了,它会再次返回1。如果对第一个就绪的channel没有做任何操作,现在就有两个就绪的通道,但在每次select()方法调用之间,只有一个通道就绪了。

一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问“已选择键集(selected key set)”中的就绪通道。如下所示:

Set selectedKeys = selector.selectedKeys();

当向Selector注册Channel时,Channel.register()方法会返回一个SelectionKey 对象。这个对象代表了注册到该Selector的通道。

注意每次迭代末尾的keyIterator.remove()调用。Selector不会自己从已选择键集中移除SelectionKey实例。必须在处理完通道时自己移除。下次该通道变成就绪时,Selector会再次将其放入已选择键集中。

SelectionKey.channel()方法返回的通道需要转型成你要处理的类型,如ServerSocketChannel或SocketChannel等。

一个完整的使用Selector和ServerSocketChannel的案例可以参考案例5的selector()方法。

内存映射文件

JAVA处理大文件,一般用BufferedReader,BufferedInputStream这类带缓冲的IO类,不过如果文件超大的话,更快的方式是采用MappedByteBuffer。

MappedByteBuffer是NIO引入的文件内存映射方案,读写性能极高。NIO最主要的就是实现了对异步操作的支持。其中一种通过把一个套接字通道(SocketChannel)注册到一个选择器(Selector)中,不时调用后者的选择(select)方法就能返回满足的选择键(SelectionKey),键中包含了SOCKET事件信息。这就是select模型。

SocketChannel的读写是通过一个类叫ByteBuffer来操作的.这个类本身的设计是不错的,比直接操作byte[]方便多了. ByteBuffer有两种模式:直接/间接.间接模式最典型(也只有这么一种)的就是HeapByteBuffer,即操作堆内存 (byte[]).但是内存毕竟有限,如果我要发送一个1G的文件怎么办?不可能真的去分配1G的内存.这时就必须使用"直接"模式,即 MappedByteBuffer,文件映射.

先中断一下,谈谈操作系统的内存管理.一般操作系统的内存分两部分:物理内存;虚拟内存.虚拟内存一般使用的是页面映像文件,即硬盘中的某个(某些)特殊的文件.操作系统负责页面文件内容的读写,这个过程叫"页面中断/切换". MappedByteBuffer也是类似的,你可以把整个文件(不管文件有多大)看成是一个ByteBuffer.MappedByteBuffer 只是一种特殊的ByteBuffer,即是ByteBuffer的子类。 MappedByteBuffer 将文件直接映射到内存(这里的内存指的是虚拟内存,并不是物理内存)。通常,可以映射整个文件,如果文件比较大的话可以分段进行映射,只要指定文件的那个部分就可以。

概念

FileChannel提供了map方法来把文件影射为内存映像文件: MappedByteBuffer map(int mode,long position,long size); 可以把文件的从position开始的size大小的区域映射为内存映像文件,mode指出了 可访问该内存映像文件的方式:

  • READ_ONLY,(只读): 试图修改得到的缓冲区将导致抛出 ReadOnlyBufferException.(MapMode.READ_ONLY)

  • READ_WRITE(读/写): 对得到的缓冲区的更改最终将传播到文件;该更改对映射到同一文件的其他程序不一定是可见的。 (MapMode.READ_WRITE)

  • PRIVATE(专用): 对得到的缓冲区的更改不会传播到文件,并且该更改对映射到同一文件的其他程序也不是可见的;相反,会创建缓冲区已修改部分的专用副本。 (MapMode.PRIVATE)

MappedByteBuffer是ByteBuffer的子类,其扩充了三个方法:

  • force():缓冲区是READ_WRITE模式下,此方法对缓冲区内容的修改强行写入文件;

  • load():将缓冲区的内容载入内存,并返回该缓冲区的引用;

  • isLoaded():如果缓冲区的内容在物理内存中,则返回真,否则返回假;

案例对比

这里通过采用ByteBuffer和MappedByteBuffer分别读取大小约为5M的文件"src/1.ppt"来比较两者之间的区别,method3()是采用MappedByteBuffer读取的,method4()对应的是ByteBuffer。

public static void method4(){
        RandomAccessFile aFile = null;
        FileChannel fc = null;
        try{
            aFile = new RandomAccessFile("src/1.ppt","rw");
            fc = aFile.getChannel();
            long timeBegin = System.currentTimeMillis();
            ByteBuffer buff = ByteBuffer.allocate((int) aFile.length());
            buff.clear();
            fc.read(buff);
            //System.out.println((char)buff.get((int)(aFile.length()/2-1)));
            //System.out.println((char)buff.get((int)(aFile.length()/2)));
            //System.out.println((char)buff.get((int)(aFile.length()/2)+1));
            long timeEnd = System.currentTimeMillis();
            System.out.println("Read time: "+(timeEnd-timeBegin)+"ms");
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(aFile!=null){
                    aFile.close();
                }
                if(fc!=null){
                    fc.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }
    public static void method3(){
        RandomAccessFile aFile = null;
        FileChannel fc = null;
        try{
            aFile = new RandomAccessFile("src/1.ppt","rw");
            fc = aFile.getChannel();
            long timeBegin = System.currentTimeMillis();
            MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_ONLY, 0, aFile.length());
            // System.out.println((char)mbb.get((int)(aFile.length()/2-1)));
            // System.out.println((char)mbb.get((int)(aFile.length()/2)));
            //System.out.println((char)mbb.get((int)(aFile.length()/2)+1));
            long timeEnd = System.currentTimeMillis();
            System.out.println("Read time: "+(timeEnd-timeBegin)+"ms");
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(aFile!=null){
                    aFile.close();
                }
                if(fc!=null){
                    fc.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }

通过在入口函数main()中运行:

        method3();
        System.out.println("=============");
        method4();

输出结果(运行在普通PC机上):

Read time: 2ms
=============
Read time: 12ms

通过输出结果可以看出彼此的差别,一个例子也许是偶然,那么下面把5M大小的文件替换为200M的文件,输出结果:

Read time: 1ms
=============
Read time: 407ms

可以看到差距拉大。

注:MappedByteBuffer有资源释放的问题:被MappedByteBuffer打开的文件只有在垃圾收集时才会被关闭,而这个点是不确定的。在Javadoc中这里描述:A mapped byte buffer and the file mapping that it represents remian valid until the buffer itself is garbage-collected。详细可以翻阅参考资料5和6.

其余功能介绍

看完以上陈述,详细大家对NIO有了一定的了解,下面主要通过几个案例,来说明NIO的其余功能,下面代码量偏多,功能性讲述偏少。

Scatter/Gatter

分散(scatter)从Channel中读取是指在读操作时将读取的数据写入多个buffer中。因此,Channel将从Channel中读取的数据“分散(scatter)”到多个Buffer中。

聚集(gather)写入Channel是指在写操作时将多个buffer的数据写入同一个Channel,因此,Channel 将多个Buffer中的数据“聚集(gather)”后发送到Channel。

scatter / gather经常用于需要将传输的数据分开处理的场合,例如传输一个由消息头和消息体组成的消息,你可能会将消息体和消息头分散到不同的buffer中,这样你可以方便的处理消息头和消息体。

案例:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.channels.Channel;
import java.nio.channels.FileChannel;
public class ScattingAndGather
{
    public static void main(String args[]){
        gather();
    }
    public static void gather()
    {
        ByteBuffer header = ByteBuffer.allocate(10);
        ByteBuffer body = ByteBuffer.allocate(10);
        byte [] b1 = {'0', '1'};
        byte [] b2 = {'2', '3'};
        header.put(b1);
        body.put(b2);
        ByteBuffer [] buffs = {header, body};
        try
        {
            FileOutputStream os = new FileOutputStream("src/scattingAndGather.txt");
            FileChannel channel = os.getChannel();
            channel.write(buffs);
        }
        catch (IOException e)
        {
            e.printStackTrace();
        }
    }
}

transferFrom & transferTo

FileChannel的transferFrom()方法可以将数据从源通道传输到FileChannel中。

public static void method1(){
        RandomAccessFile fromFile = null;
        RandomAccessFile toFile = null;
        try
        {
            fromFile = new RandomAccessFile("src/fromFile.xml","rw");
            FileChannel fromChannel = fromFile.getChannel();
            toFile = new RandomAccessFile("src/toFile.txt","rw");
            FileChannel toChannel = toFile.getChannel();
            long position = 0;
            long count = fromChannel.size();
            System.out.println(count);
            toChannel.transferFrom(fromChannel, position, count);
        }
        catch (IOException e)
        {
            e.printStackTrace();
        }
        finally{
            try{
                if(fromFile != null){
                    fromFile.close();
                }
                if(toFile != null){
                    toFile.close();
                }
            }
            catch(IOException e){
                e.printStackTrace();
            }
        }
    }

方法的输入参数position表示从position处开始向目标文件写入数据,count表示最多传输的字节数。如果源通道的剩余空间小于 count 个字节,则所传输的字节数要小于请求的字节数。此外要注意,在SoketChannel的实现中,SocketChannel只会传输此刻准备好的数据(可能不足count字节)。因此,SocketChannel可能不会将请求的所有数据(count个字节)全部传输到FileChannel中。

transferTo()方法将数据从FileChannel传输到其他的channel中。

public static void method2()
    {
        RandomAccessFile fromFile = null;
        RandomAccessFile toFile = null;
        try
        {
            fromFile = new RandomAccessFile("src/fromFile.txt","rw");
            FileChannel fromChannel = fromFile.getChannel();
            toFile = new RandomAccessFile("src/toFile.txt","rw");
            FileChannel toChannel = toFile.getChannel();
            long position = 0;
            long count = fromChannel.size();
            System.out.println(count);
            fromChannel.transferTo(position, count,toChannel);
        }
        catch (IOException e)
        {
            e.printStackTrace();
        }
        finally{
            try{
                if(fromFile != null){
                    fromFile.close();
                }
                if(toFile != null){
                    toFile.close();
                }
            }
            catch(IOException e){
                e.printStackTrace();
            }
        }
    }

上面所说的关于SocketChannel的问题在transferTo()方法中同样存在。SocketChannel会一直传输数据直到目标buffer被填满。

Pipe

Java NIO 管道是2个线程之间的单向数据连接。Pipe有一个source通道和一个sink通道。数据会被写到sink通道,从source通道读取。

 public static void method1(){
        Pipe pipe = null;
        ExecutorService exec = Executors.newFixedThreadPool(2);
        try{
            pipe = Pipe.open();
            final Pipe pipeTemp = pipe;
            exec.submit(new Callable<Object>(){
                @Override
                public Object call() throws Exception
                {
                    Pipe.SinkChannel sinkChannel = pipeTemp.sink();//向通道中写数据
                    while(true){
                        TimeUnit.SECONDS.sleep(1);
                        String newData = "Pipe Test At Time "+System.currentTimeMillis();
                        ByteBuffer buf = ByteBuffer.allocate(1024);
                        buf.clear();
                        buf.put(newData.getBytes());
                        buf.flip();
                        while(buf.hasRemaining()){
                            System.out.println(buf);
                            sinkChannel.write(buf);
                        }
                    }
                }
            });
            exec.submit(new Callable<Object>(){
                @Override
                public Object call() throws Exception
                {
                    Pipe.SourceChannel sourceChannel = pipeTemp.source();//向通道中读数据
                    while(true){
                        TimeUnit.SECONDS.sleep(1);
                        ByteBuffer buf = ByteBuffer.allocate(1024);
                        buf.clear();
                        int bytesRead = sourceChannel.read(buf);
                        System.out.println("bytesRead="+bytesRead);
                        while(bytesRead >0 ){
                            buf.flip();
                            byte b[] = new byte[bytesRead];
                            int i=0;
                            while(buf.hasRemaining()){
                                b[i]=buf.get();
                                System.out.printf("%X",b[i]);
                                i++;
                            }
                            String s = new String(b);
                            System.out.println("=================||"+s);
                            bytesRead = sourceChannel.read(buf);
                        }
                    }
                }
            });
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            exec.shutdown();
        }
    }

DatagramChannel

Java NIO中的DatagramChannel是一个能收发UDP包的通道。因为UDP是无连接的网络协议,所以不能像其它通道那样读取和写入。它发送和接收的是数据包。

public static void  reveive(){
        DatagramChannel channel = null;
        try{
            channel = DatagramChannel.open();
            channel.socket().bind(new InetSocketAddress(8888));
            ByteBuffer buf = ByteBuffer.allocate(1024);
            buf.clear();
            channel.receive(buf);
            buf.flip();
            while(buf.hasRemaining()){
                System.out.print((char)buf.get());
            }
            System.out.println();
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(channel!=null){
                    channel.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }
    public static void send(){
        DatagramChannel channel = null;
        try{
            channel = DatagramChannel.open();
            String info = "I'm the Sender!";
            ByteBuffer buf = ByteBuffer.allocate(1024);
            buf.clear();
            buf.put(info.getBytes());
            buf.flip();
            int bytesSent = channel.send(buf, new InetSocketAddress("10.10.195.115",8888));
            System.out.println(bytesSent);
        }catch(IOException e){
            e.printStackTrace();
        }finally{
            try{
                if(channel!=null){
                    channel.close();
                }
            }catch(IOException e){
                e.printStackTrace();
            }
        }
    }

转载自 朱小厮的博客

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

java NIO 的相关文章

  • 用于持续流式传输的 java.nio 选择器和 SocketChannel

    我目前正在使用 java nio channel Selectors 和 SocketChannels 作为应用程序 该应用程序将打开一对多连接以继续流式传输到服务器 我的应用程序有三个线程 StreamWriteWorker 对 Sock
  • java nio 直接缓冲区上的压缩

    gzip 输入 输出流不在 Java 直接缓冲区上运行 是否有直接在直接缓冲区上运行的压缩算法实现 这样就不会产生将直接缓冲区复制到 java 字节数组进行压缩的开销 我无意转移你的问题 但这就是really你的程序中有一个好的优化点吗 您
  • Java中的IO与NIO篇----第二篇

    系列文章目录 文章目录 系列文章目录 前言 一 阻塞 IO 模型 二 非阻塞 IO 模型 三 多路复用 IO 模型 前言 前些天发现了一个巨牛的人工智能学习网站 通俗易懂 风趣幽默 忍不住分享一下给大家 点击跳转到网站 这篇文章男女通用 看
  • Files.walk(),计算总大小

    我正在尝试计算光盘上文件的大小 在 java 7 中 这可以使用文件 walkFileTree http docs oracle com javase 8 docs api java nio file Files html walkFile
  • Files#delete(Path) 和 File#delete() 之间的区别

    我正在使用带有 java 7 update 6 的 Windows 7 并发现这种奇怪的 至少对我来说 行为 我有两个文件E delete1 txt and E delete2 txt两者都是只读文件 当我尝试删除如下文件时 它会被删除而没
  • Java:是否可以通过 Object(In|Out)putStreams 在阻塞 SocketChannel 上进行并发读取和写入?

    我创建了一个ObjectInputSteam and ObjectOutputStream在阻塞上SocketChannel我正在尝试同时读写 我的代码是这样的 socketChannel SocketChannel open destNo
  • 每个 UDP 数据报的 Netty 不同管道

    我们有一个已经在 TCP IP 中实现的服务器 但现在我们要求该协议也支持 UDP 发送的每个 UDP 数据报都包含我需要解码的所有内容 因此这是一个非常简单的回复和响应系统 数据报中的数据由换行符分隔 服务器启动时的引导代码如下所示 SE
  • 如何绕过java.nio.file.DirectoryNotEmptyException? [复制]

    这个问题在这里已经有答案了 有没有办法绕过java nio file DirectoryNotEmptyException 我希望能够删除其中包含内容的文件夹 有没有办法绕过java nio file DirectoryNotEmptyEx
  • Java NIO ByteBuffer,翻转后写入

    我是 Java ByteBuffers 的新手 想知道翻转后写入 ByteBuffer 的正确方法是什么 在我的用例中 我将一个输出缓冲区写入套接字 outBuffer flip Non blocking SocketChannel int
  • 我可以使用 FileChannel 独立地从不同线程查找文件吗?

    我创建了一个可处理 FLV 文件的 Web 应用程序 该应用程序使用我创建的一个库来解析 flv 文件的内容 该库使用 FileChannel 来查找文件 现在 我从不同的线程中寻找相同的 flv 文件 因此遇到了一种奇怪的行为 这么说吧T
  • WatchService 和 SwingWorker:如何正确执行?

    WatchService 听起来像是一个令人兴奋的想法 不幸的是 它似乎像教程 api 中警告的那样低级 而且并不真正适合 Swing 事件模型 或者我错过了一些明显的东西 非零概率 获取代码来自教程中的 WatchDir 示例 http
  • Java NIO 服务器/客户端聊天应用程序 - 仅通过关闭套接字来发送数据

    朋友们 我是 Java NIO 的新手 目前正在尝试制作一个非阻塞聊天应用程序 客户端连接到服务器没有问题 客户端向服务器写入一条消息或几条消息 但服务器仅在客户端代码关闭 Socket 连接时才开始读取消息 因此必须在客户端代码中为每条消
  • 将密钥添加到选定的密钥集中

    我正在编写一个 NIO 服务器 并希望响应用户请求 即将一些数据写入通道 Selector selector if selector selectNow 0 if key isReadable SocketChannel channel k
  • 如何在Java NIO中配置socks代理

    我正在开发一个工具 其中包括强制应用程序的所有网络流量通过Java中的socks代理 对于旧的 Socket API 我只需设置系统属性 DsocksProxyHost my host DsocksProxyPort my port 但它不
  • 导致崩溃转储的 Java 错误的解决方法

    我开发的一个程序偶尔会由于这个错误而导致 JVM 崩溃 http bugs java com bugdatabase view bug do bug id 8029516 http bugs java com bugdatabase vie
  • Java NIO Pipe 与 BlockingQueue

    我刚刚发现它只有一个 NIO 工具 即 Java NIO Pipe 它是为在线程之间传递数据而设计的 与通过队列 例如 ArrayBlockingQueue 传递的更传统的消息相比 使用此机制是否有任何优势 通常 将数据传递给另一个线程进行
  • 为什么 Cassandra 客户端在生产中没有 epoll 时会失败? [复制]

    这个问题在这里已经有答案了 当我在本地运行服务时 我收到一条警告 指出 epoll 不可用 因此它使用 NIO 很公平 当我将其部署到 Kubernetes 中时 我得到了以下信息 这导致服务无法运行 2017 03 29T19 09 22
  • 我们是否需要使用 MappedByteBuffer.force() 将数据刷新到磁盘?

    我正在使用 MappedByteBuffer 来加速文件读 写操作 我的问题如下 我不确定是否需要使用 force 方法将内容刷新到磁盘 似乎没有 force getInt 仍然可以完美工作 好吧 因为这是一个内存映射缓冲区 我假设 get
  • 快速写入:内存映射文件与 BufferedWriter

    有人对此进行过基准测试吗 我希望尽可能快地写入磁盘 最大限度地减少写入调用的延迟 我想知道写入内存映射缓冲区 通过 buffer put 是否比仅在 Java 端缓冲内容并在缓冲区满后刷新到 fileChannel 更快 这样 一旦缓冲区已
  • NIO 直接缓冲区何时以及如何被释放?

    我有一个 C 库 需要一个临时缓冲区作为暂存空间 我正在考虑将直接字节缓冲区的地址传递给它 在最终释放缓冲区之前 是否允许虚拟机重新定位缓冲区 JNI 框架消失后 本机库将保留该指针 我的理解是 JNI 本地对象引用无法缓存 因为 VM 可

随机推荐

  • pytorch使用profiler对模型性能分析时报错

    源码 参考自 PyTorch模型性能分析 优化及部署 aliyun com def analysis from torch profiler import profile tensorboard trace handler import t
  • Java Instrument 功能使用及原理

    0 介绍 利用 java lang instrument 做动态 Instrumentation 是 Java SE 5 的新特性 它把 Java 的 instrument 功能从本地代码中解放出来 使之可以用 Java 代码的方式解决问题
  • 弹弹弹,弹走鱼尾纹的弹出菜单(vue)

    前言 上一篇面试的总结 大家看的还行 因为量很大 错误在所难免 希望大家发现错误了可以告诉我一声 我的邮箱是236490794 qq com 一个小前端的希望 言归正传 我们老样子直接先上效果图再开始今天的分享这个项目的github可以看一
  • mpvue,uni-app开发微信小程序遇到的坑,直接在组件上写样式失效

    1 问题 在组件上直接写样式在小程序中不生效 解决办法
  • 互联网摸鱼日报(2023-06-25)

    互联网摸鱼日报 2023 06 25 InfoQ 热门话题 PayPal开源JunoDB 支持3500亿次日请求的键值存储 博客园新闻 马斯克小扎公开约架 亿万富翁八角笼决斗 Meta发言人 不是玩笑 亚马逊云斥资1亿美元建AIGC中心 微
  • 分布式训练——集合通信及其通信原语

    分布式训练 集合通信及其通信原语 转自 分布式训练 第3篇 集合通信及其通信原语 作者 常平 1 概述 集合通信 Collective Communications 是一个进程组的所有进程都参与的全局通信操作 其最为基础的操作有 发送sen
  • EHCI控制器(3)——host模式数据传输模型

    3 host模式数据传输模型 3 1控制传输 3 1 1配置通道特性 3 1 2配置通道0 包数量 3 1 3配置通道0 PID 3 1 4配置DMA描述符 3 1 5更新DMA描述符地址 3 1 6清通道0中断状态 3 1 7使能通道0
  • java代码_阿里Java团队的的代码规范,学到很多

    一 迭代entrySet 获取Map 的key 和value 当循环中只需要获取Map 的主键key时 迭代keySet 是正确的 但是 当需要主键key 和取值value 时 迭代entrySet 才是更高效的做法 其比先迭代keySet
  • mysql 本周函数_MySQL的YEARWEEK函数以及查询本周数据(转)

    MySQL的YEARWEEK函数以及查询本周数据 MySQL 的 YEARWEEK 是获取年份和周数的一个函数 函数形式为 YEARWEEK date mode 例如 2010 3 14 礼拜天 SELECT YEARWEEK 2010 3
  • Oracle+jdbc+rac+url,jdbc连接oracle rac数据库的写法

    RAC是real application clusters的缩写 译为 实时应用集群 是Oracle新版数据库中采用的一项新技术 是高可用性的一种 也是Oracle数据库支持网格计算环境的核心技术 jdbc连接oracle rac数据库的写
  • JDBC与PostgreSQL(二)

    目录 一 执行DDL语句 二 执行DML语句 三 执行DQL语句 四 使用预编译的方式执行SQL语句 推荐 一 执行DDL语句 SQL的DDL语句也就是数据定义语言 Data Definition Language 在JDBC中需要获取St
  • linux下U盘和SD卡的热拔插检测

    在Linux中 可以使用udev Linux设备管理器 来检测U盘的插入和拔出事件 udev是一个用于管理和监控设备的子系统 它可以通过监视内核事件来触发相应的操作 创建一个udev规则文件 10 usb rules脚本如下 KERNEL
  • 开源水下机器人之推进器使用教程

    主要还是参考官方原文 点击打开链接 首先看看套件外观 中规中矩 比较简单 器件材料
  • 安装laravel 遇到的一个坑

    在安装php spider之前必须安装Composer 安装Composer之后 通过php spider的说明文档进行安装 出现以下错误 Failed to download vdb uri from source The Process
  • JS逆向 数据类型/常用加密之小白入门基础篇一

    JS逆向 数据类型 常用加密之小白入门基础篇一 文章目录 JS逆向 数据类型 常用加密之小白入门基础篇一 TOC 文章目录 前言 一 JavaScript 基础常识 语法基础 1 1基本数据类型 1 2 引用数据类型 1 3 语句标识符 2
  • 《武术与设计模式》创建型

    本人喜欢武术 故写下此篇 权当消遣 仅供参考 创建型 原意 创建对象的模式 单例 程序 一个对象就存在一个 武林 所谓 武林至尊 宝刀屠龙 号令天下 莫敢不从 匠人在打造屠龙宝刀时 决定打造一件世间仅此一件的宝物 简单工厂 程序 某种类型指
  • 【数据库】MySQL中的锁机制

    MySQL中的锁机制 数据库锁定机制简单来说 就是数据库为了保证数据的一致性 而使各种共享资源在被并发访问变得有序所设计的一种规则 MySQL 数据库由于其自身架构的特点 存在多种数据存储引擎 每种存储引擎的锁定机制都是为各自所面对的特定场
  • 在树莓派linux系统下写c程序

    本文主要介绍如何在树莓派 ubuntu mate系统 下写第一个c程序 两种方式 一是emacs 二是vi 一 用emacs写c程序 1 打开终端 输入 emacs hello em world c 如果你还没有安装 会出现以下提示 如图
  • 关于解决多台服务器间的文件实时同步问题

    最近要做一个相关的解决方案 在虚拟机测试没有问题 给大家分享出来 有更好的解决方案 欢迎讨论 1 1 inotify相关介绍 1 rsync 与传统的cp tar备份方式相比 rsync具有安全性高 备份迅速 支持增量备份等优点 通过rsy
  • java NIO

    概述 NIO主要有三大核心部分 Channel 通道 Buffer 缓冲区 Selector 选择器 NIO 与 IO的区别 IO是面向流的 NIO是面向缓冲区的 Java IO面向流意味着每次从流中读一个或多个字节 直至读取所有字节 它们