设备树学习之(十二)LCD驱动

2023-05-16

开发板:tiny4412SDK + S702 + 4GB Flash
要移植的内核版本:Linux-4.4.0 (支持device tree)
u-boot版本:友善之臂自带的 U-Boot 2010.12
busybox版本:busybox 1.25

参考:tiny4412LCD驱动加字符显示

1、背光
  友善之臂的该款LCD采用了一线触控技术,包括背光控制也集成在一线触控之中,关于背光的控制,在前一篇文章中已经提及,本文重点在于LCD驱动。

2、LCD接口

  • 1)Tiny 4412 使用的lcd接口为LCD1
  • 2)图片数据信号接口
    • B[0:7] : 蓝色数据信号线
    • G[0:7] : 绿色数据信号线
    • R[0:7] : 红色数据信号线
  • 3)时序信号接口
    • DEN 数据允许信号
    • VSYNC 垂直同步信号
    • HSYNC 水平同步信号
    • VLCK LCD时钟信号
  • 4)一线触控
    • XEINT10_OUT

这里写图片描述

3、图像的构成

  • 帧:一幅图像被称为一帧,每帧有多行组成,每行有多个像素点组成
  • 像素:
    • 1)显示的最小单位
    • 2)由若干位的颜色数据来构成,像素越高,则一个像素点所需要的颜色数据越多,能够显示的颜色更广
    • 3)一个像素点构成的颜色位数称为像素深度,单位为1BPP 常见的有16BPP/24BPP

4、颜色的量化(颜色<—–>数字)
颜色一般采用RGB标准,通过对红(R)、绿(GREEN),蓝(B)三个颜色以及相互叠加获取各种不同的颜色

  • 1)通过对颜色的编码来对颜色进行量化(即转换成数字量,RGB是一种编码方式)
  • 2)每种颜色根据RGB格式不同,每种颜色的量化位不相同
  • 3) 常见的RGB格式有RGB565/RGB888
    • RGB565: red :5 green : 6 blue:5
    • RGB888: red :8 green : 8 blue:8

5、显示图像与LCD时序

  • 1)使用HSYNC信号来控制一行的显示
  • 2)使用VSYNC信号来控制一帧的显示
  • 3)使用VCLK信号来控制一个像素的显示
  • 4)使用VDEN信号来控制数据的输出

6、Exyons 4412 display 控制器

  • 1)alpha,alpha操作用于实现图形渐变效果,以及半透明效果
    • 0xfff == 全透明
    • 0x0 == 不透明
  • 2)colorkey,colorkey操作在融合两个窗口时过虑掉其中一个窗口的某一种特定颜色
  • 3)HOZVAL与LINEVAL
    • HOZVAL = (Horizontal display size) - 1
    • LINEVAL = (Vertical display size) - 1
  • 4)LCD时序图
    notes:
    .Using the display controller data, you can select one of the above data paths by setting LCDBLK_CFG Register(0x1001_0210). For more information, refer to the “System Others” manual
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述

7、Exyons 4412 display 控制器配置

  • 1)gpio配置,查看原理图 ,获取LCD接口的对应的gpio
    • LCD_HSYNC:GPF0_0
    • LCD_VSYNC:GPF0_1
    • LCD_VDEV: GPF0_2
    • LCD_VCLK: GPF0_3
    • VD[23:0]:GPF1_0 - GPF1_5 / GPF2_0 - GPF2_7 / GPF3_0 - GPF3_3
  • 2)时钟配置
    • (1)查看Exyons 4412 手册 获取LCD时钟源
      LCD 时钟源为SCLKmpll_user_t:800Mhz
    • (2)配置相关的寄存器得到LCD所需要的时钟 (见07lcd_clock)
  • 3)系统配置
    LCDBLK_CFG : 配置成FIMD接口
    这里写图片描述

一、设备树

&pinctrl_0 {
        lcd_demo: lcd{
                samsung,pins = "gpf0-0", "gpf0-1", "gpf0-2", "gpf0-3", "gpf0-4", "gpf0-5", "gpf0-6","gpf0-7", "gpf1-0", "gpf1-1", "gpf1-2", "gpf1-3", "gpf1-4", "gpf1-5", "gpf1-6","gpf1-7", "gpf2-0", "gpf2-1", "gpf2-2", "gpf2-3", "gpf2-4", "gpf2-5", "gpf2-6","gpf2-7", "gpf3-0", "gpf3-1", "gpf3-2", "gpf3-3";
                samsung,pin-function = <2>;
                samsung,pin-pud = <0>;
                samsung,pin-drv = <0>;
        };
};

        lcd_demo@11C00000{
                compatible         = "tiny4412,lcd_demo";
                reg = <0x11C00000  0x20c0 0x10010210 0x08 0x10023c80 0x04 0x1003c000 0x1000>;
                pinctrl-names = "default";
                pinctrl-0 = <&lcd_demo>;
                clocks = <&clock CLK_FIMD0 &clock CLK_ACLK160>;
                clock-names = "fimd0","aclk160";
        };

二、驱动代码

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/clk.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/div64.h>

#include <asm/mach/map.h>
#include <linux/fb.h>
#include <asm/types.h>

#define     VIDCON0         0x00
#define     VIDCON1         0x04
#define     VIDTCON0        0x10
#define     VIDTCON1        0x14
#define     VIDTCON2        0x18
#define     WINCON0         0x20
#define     VIDOSD0C        0x48
#define     SHADOWCON       0x34
#define     WINCHMAP2       0x3c
#define     VIDOSD0A        0x40
#define     VIDOSD0B        0x44
#define     VIDW00ADD0B0    0xA0
#define     VIDW00ADD1B0    0xD0

#define     CLK_SRC_LCD0        0x234
#define     CLK_SRC_MASK_LCD    0x334
#define     CLK_DIV_LCD         0x534
#define     CLK_GATE_IP_LCD     0x934

#define     LCDBLK_CFG      0x00
#define     LCDBLK_CFG2     0x04

static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
                               unsigned int green, unsigned int blue,
                               unsigned int transp, struct fb_info *info);


static struct fb_ops s3c_lcdfb_ops =
{
    .owner      = THIS_MODULE,
    .fb_setcolreg   = s3c_lcdfb_setcolreg,
    .fb_fillrect    = cfb_fillrect,
    .fb_copyarea    = cfb_copyarea,
    .fb_imageblit   = cfb_imageblit,
};


static struct fb_info *s3c_lcd;
static volatile void __iomem *lcd_regs_base;
static volatile void __iomem *clk_regs_base;
static volatile void __iomem *lcdblk_regs_base;
static volatile void __iomem *lcd0_configuration;
static u32 pseudo_palette[16];
static struct resource *res1, *res2, *res3, *res4;

/* from pxafb.c */
static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
    chan &= 0xffff;
    chan >>= 16 - bf->length;
    return chan << bf->offset;
}


static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
                               unsigned int green, unsigned int blue,
                               unsigned int transp, struct fb_info *info)
{
    unsigned int val;

    if (regno > 16)
        { return 1; }

    /* 用red,green,blue三原色构造出val */
    val  = chan_to_field(red,   &info->var.red);
    val |= chan_to_field(green, &info->var.green);
    val |= chan_to_field(blue,  &info->var.blue);
    //((u32 *)(info->pseudo_palette))[regno] = val;
    pseudo_palette[regno] = val;
    return 0;
}

static int lcd_probe(struct platform_device *pdev)
{
    int ret;
    unsigned int temp;
    /* 1. 分配一个fb_info */
    s3c_lcd = framebuffer_alloc(0, NULL);
    /* 2. 设置 */
    /* 2.1 设置 fix 固定的参数 */
    strcpy(s3c_lcd->fix.id, "mylcd");
    s3c_lcd->fix.smem_len = 480 * 800 * 16 / 8;     //显存的长度
    s3c_lcd->fix.type     = FB_TYPE_PACKED_PIXELS;  //类型
    s3c_lcd->fix.visual   = FB_VISUAL_TRUECOLOR;    //TFT 真彩色
    s3c_lcd->fix.line_length = 800 * 2;             //一行的长度
    /* 2.2 设置 var 可变的参数 */
    s3c_lcd->var.xres           = 800;  //x方向分辨率
    s3c_lcd->var.yres           = 480;  //y方向分辨率
    s3c_lcd->var.xres_virtual   = 800;  //x方向虚拟分辨率
    s3c_lcd->var.yres_virtual   = 480;  //y方向虚拟分辨率
    s3c_lcd->var.bits_per_pixel = 16;   //每个像素占的bit
    /* RGB:565 */
    s3c_lcd->var.red.offset     = 11;   //红
    s3c_lcd->var.red.length     = 5;
    s3c_lcd->var.green.offset   = 5;    //绿
    s3c_lcd->var.green.length   = 6;
    s3c_lcd->var.blue.offset    = 0;    //蓝
    s3c_lcd->var.blue.length    = 5;
    s3c_lcd->var.activate       = FB_ACTIVATE_NOW;
    /* 2.3 设置操作函数 */
    s3c_lcd->fbops              = &s3c_lcdfb_ops;
    /* 2.4 其他的设置 */
    s3c_lcd->pseudo_palette = pseudo_palette;       //调色板
    //s3c_lcd->screen_base  = ;                     //显存的虚拟地址,分配显存时填充
    s3c_lcd->screen_size    = 480 * 800 * 16 / 8;   //显存大小
    /* 3. 硬件相关的操作 */
    /* 3.1 配置GPIO用于LCD */
    //设备树中使用"default"
    /* 3.2 根据LCD手册设置LCD控制器, 比如VCLK的频率等 */
    //寄存器映射
    res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);

    if (res1 == NULL)
    {
        printk("platform_get_resource error\n");
        return -EINVAL;
    }

    lcd_regs_base = devm_ioremap_resource(&pdev->dev, res1);

    if (lcd_regs_base == NULL)
    {
        printk("devm_ioremap_resource error\n");
        return -EINVAL;
    }

    res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);

    if (res2 == NULL)
    {
        printk("platform_get_resource error\n");
        return -EINVAL;
    }

    lcdblk_regs_base = devm_ioremap_resource(&pdev->dev, res2);

    if (lcdblk_regs_base == NULL)
    {
        printk("devm_ioremap_resource error\n");
        return -EINVAL;
    }

    res3 = platform_get_resource(pdev, IORESOURCE_MEM, 2);

    if (res3 == NULL)
    {
        printk("platform_get_resource error\n");
        return -EINVAL;
    }

    lcd0_configuration = ioremap(res3->start, 0x04);
    *lcd0_configuration = 0x07;

    res4 = platform_get_resource(pdev, IORESOURCE_MEM, 3);

    if (res4 == NULL)
    {
        printk("platform_get_resource error\n");
        return -EINVAL;
    }

    clk_regs_base = ioremap(res4->start, 0x1000);

    if (clk_regs_base == NULL)
    {
        printk("devm_ioremap_resource error\n");
        return -EINVAL;
    }

    //使能时钟
    //时钟源选择 0110  SCLKMPLL_USER_T 800M
    temp = readl(clk_regs_base + CLK_SRC_LCD0);
    temp &= ~0x0f;
    temp |= 0x06;
    writel(temp, clk_regs_base + CLK_SRC_LCD0);

    //FIMD0_MASK
    temp = readl(clk_regs_base + CLK_SRC_MASK_LCD);
    temp |= 0x01;
    writel(temp, clk_regs_base + CLK_SRC_MASK_LCD);

    //SCLK_FIMD0 = MOUTFIMD0/(FIMD0_RATIO + 1),分频 1/1
    temp = readl(clk_regs_base + CLK_DIV_LCD);
    temp &= ~0x0f;
    writel(temp, clk_regs_base + CLK_DIV_LCD);

    //CLK_FIMD0 Pass
    temp = readl(clk_regs_base + CLK_GATE_IP_LCD);
    temp |= 0x01;
    writel(temp, clk_regs_base + CLK_GATE_IP_LCD);

    //FIMDBYPASS_LBLK0 FIMD Bypass
    temp = readl(lcdblk_regs_base + LCDBLK_CFG);
    temp |= 1 << 1;
    writel(temp, lcdblk_regs_base + LCDBLK_CFG);
    temp = readl(lcdblk_regs_base + LCDBLK_CFG2);
    temp |= 1 << 0;
    writel(temp, lcdblk_regs_base + LCDBLK_CFG2);
    mdelay(1000);

    //分频    800/(23 +1 ) == 33M
    temp = readl(lcd_regs_base + VIDCON0);
    temp |= (23 << 6);
    writel(temp, lcd_regs_base + VIDCON0);

    /*
     * VIDTCON1:
     * [5]:IVSYNC  ===> 1 : Inverted(反转)
     * [6]:IHSYNC  ===> 1 : Inverted(反转)
     * [7]:IVCLK   ===> 1 : Fetches video data at VCLK rising edge (下降沿触发)
     * [10:9]:FIXVCLK  ====> 01 : VCLK running
     */
    temp = readl(lcd_regs_base + VIDCON1);
    temp |= (1 << 9) | (1 << 7) | (1 << 5) | (1 << 6);
    writel(temp, lcd_regs_base + VIDCON1);

    /*
     * VIDTCON0:
     * [23:16]:  VBPD + 1  <------> tvpw (1 - 20)  13
     * [15:8] :  VFPD + 1  <------> tvfp 22
     * [7:0]  :  VSPW  + 1 <------> tvb - tvpw = 23 - 13 = 10
     */
    temp = readl(lcd_regs_base + VIDTCON0);
    temp |= (12 << 16) | (21 << 8) | (9);
    writel(temp, lcd_regs_base + VIDTCON0);

    /*
     * VIDTCON1:
     * [23:16]:  HBPD + 1  <------> thpw (1 - 40)  36
     * [15:8] :  HFPD + 1  <------> thfp 210
     * [7:0]  :  HSPW  + 1 <------> thb - thpw = 46 - 36 = 10
     */
    temp = readl(lcd_regs_base + VIDTCON1);
    temp |= (35 << 16) | (209 << 8)  | (9);
    writel(temp, lcd_regs_base + VIDTCON1);

    /*
     * HOZVAL = (Horizontal display size) - 1 and LINEVAL = (Vertical display size) - 1.
     * Horizontal(水平) display size : 800
     * Vertical(垂直) display size : 480
     */
    temp = (479 << 11) | 799;
    writel(temp, lcd_regs_base + VIDTCON2);

    /*
     * WINCON0:
     * [16]:Specifies Half-Word swap control bit.  1 = Enables swap P1779 低位像素存放在低字节
     * [5:2]: Selects Bits Per Pixel (BPP) mode for Window image : 0101 ===> 16BPP RGB565
     * [1]:Enables/disables video output   1 = Enables
     */
    temp = readl(lcd_regs_base + WINCON0);
    temp |= (1 << 16) | (5 << 2) | 1;
    writel(temp, lcd_regs_base + WINCON0);

    temp = readl(lcd_regs_base + SHADOWCON);
    writel(temp | 0x01, lcd_regs_base + SHADOWCON);

    //p1769
    temp = readl(lcd_regs_base + WINCHMAP2);
    temp &= ~(7 << 16);
    temp |= 1 << 16;
    temp &= ~7;
    temp |= 1;
    writel(temp, lcd_regs_base + WINCHMAP2);

    /*
     * bit0-10 : 指定OSD图像左上像素的垂直屏幕坐标
     * bit11-21: 指定OSD图像左上像素的水平屏幕坐标
     */
    writel(0, lcd_regs_base + VIDOSD0A);

    /*
     * bit0-10 : 指定OSD图像右下像素的垂直屏幕坐标
     * bit11-21: 指定OSD图像右下像素的水平屏幕坐标
     */
    writel((799 << 11) | 479, lcd_regs_base + VIDOSD0B);

    //Window Size For example, Height ? Width (number of word)
    temp = 480 * 800 >> 1;
    writel(temp, lcd_regs_base + VIDOSD0C);

    /* 3.3 分配显存(framebuffer), 并把地址告诉LCD控制器 */
    // s3c_lcd->screen_base     显存虚拟地址
    // s3c_lcd->fix.smem_len    显存大小,前面计算的
    // s3c_lcd->fix.smem_start  显存物理地址
    s3c_lcd->screen_base = dma_alloc_writecombine(NULL, s3c_lcd->fix.smem_len, (dma_addr_t *)&s3c_lcd->fix.smem_start, GFP_KERNEL);

    //显存起始地址
    writel(s3c_lcd->fix.smem_start, lcd_regs_base + VIDW00ADD0B0);

    //显存结束地址
    writel(s3c_lcd->fix.smem_start + s3c_lcd->fix.smem_len, lcd_regs_base + VIDW00ADD1B0);
    //Enables video output and logic immediately
    temp = readl(lcd_regs_base + VIDCON0);
    writel(temp | 0x03, lcd_regs_base + VIDCON0);

    /* 4. 注册 */
    ret = register_framebuffer(s3c_lcd);
    return ret;
}

static int lcd_remove(struct platform_device *pdev)
{
    printk("%s enter.\n", __func__);
    unregister_framebuffer(s3c_lcd);
    dma_free_writecombine(NULL, s3c_lcd->fix.smem_len, s3c_lcd->screen_base, s3c_lcd->fix.smem_start);
    framebuffer_release(s3c_lcd);
    iounmap(lcd0_configuration);
    iounmap(clk_regs_base);
    return 0;
}

static const struct of_device_id lcd_dt_ids[] =
{
    { .compatible = "tiny4412,lcd_demo", },
    {},
};

MODULE_DEVICE_TABLE(of, lcd_dt_ids);

static struct platform_driver lcd_driver =
{
    .driver        = {
        .name      = "lcd_demo",
        .of_match_table    = of_match_ptr(lcd_dt_ids),
    },
    .probe         = lcd_probe,
    .remove        = lcd_remove,
};

static int lcd_init(void)
{
    int ret;
    printk("enter %s\n", __func__);
    ret = platform_driver_register(&lcd_driver);

    if (ret)
    {
        printk(KERN_ERR "pwm demo: probe faipwm: %d\n", ret);
    }

    return ret;
}

static void lcd_exit(void)
{
    printk("enter %s\n", __func__);
    platform_driver_unregister(&lcd_driver);
}

module_init(lcd_init);
module_exit(lcd_exit);

MODULE_LICENSE("GPL");

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

设备树学习之(十二)LCD驱动 的相关文章

  • micropython 8266 驱动 12864G 液晶LCD屏幕

    1 xff0c 接线顺序 引脚定义 cs 61 Pin 4 片选 reset 61 Pin 5 复位 rs 61 Pin 16 数据 指令 1数据 0 指令 DC sda 61 Pin 13 数据信号 sck 61 Pin 14 时钟信号
  • STM32的中断体系和FSMC控制LCD-第3季第7部分视频课程-朱有鹏-专题视频课程

    STM32的中断体系和FSMC控制LCD 第3季第7部分视频课程 861人已学习 课程介绍 本课程是 朱有鹏老师单片机完全学习系列课程 第3季第7个课程 xff0c 本课程详细讲解STM32的外部中断和FSMC模块 xff0c 这两个模块都
  • IMX6ULL + SPI LCD(驱动IC ILI9341)显示简单的QT界面

    1 硬件 xff1a 使用正点原子的IMX6ULL Linux开发板 开发板底板原理图版本 xff1a V2 1 核心板原理图版本 xff1a V1 6 LCD xff1a MSP2402 IC ILI9341 2 查找可用引脚 开发板上引
  • Linux-LCD驱动实现

    一 帧缓冲设备驱动在Linux子系统中的结构 xff1a 二 帧缓冲相关的重要数据结构 从帧缓冲设备驱动程序结构 看 xff0c 该驱动主要跟fb info结构体有关 xff0c 该结构体记录了帧缓冲设备的全部信息 xff0c 包括设备的设
  • LCD与LED液晶显示屏的区别

    什么是LCD LCD是液晶显示屏Liquid Crystal Display的全称 xff0c 主要有TFT UFB TFD STN等几种类型的液晶显示屏无法定位程序输入点于动态链接库上 笔记本液晶屏常用的是TFT TFT xff08 Th
  • Android中LCD背光驱动

    分类 Linux驱动 Android系统 2013 06 17 16 28 287人阅读 评论 0 收藏 举报 目录 Android的Setting Android的背光JNI层 Android的背光HAL层 Linux的背光内核层 Lin
  • [Android5.1][RK3288] LCD Mipi 调试方法及问题汇总

    调试流程 设置 dts 中的参数 并 配置管脚 背光部分 LCD 初始化序列 cmds 打开 config 检查电压 调试顺序 1 背光有没有亮 2 开机 以及 从休眠状态唤醒 都没有显示内容 3 我碰到的 cmds 问题 问题集锦 我调试
  • MSP430 LCD控制器解释

    CC430F613x的LCD控制器最多能控制160段 The LCD B controller features are Display memory Automatic signal generation Configurable fra
  • linux LCD驱动实验

    文章目录 一 linux下LCD驱动解析 1 Framebuffer设备 2 LCD驱动解析 二 硬件原理图分析 三 LCD驱动程序编写 1 LCD 屏幕 IO 配置 2 LCD 屏幕参数节点信息修改 3 LCD 屏幕背光节点信息 四 运行
  • Linux下lt8911exb调试总结

    调试lt8911exb花了两天时间 总结下 ic功能介绍 mipi转eDP http cn lontiumsemi com UploadFiles pdf LT8911EXB Product Brief pdf github下有驱动源码 可
  • LCD和LED屏幕的工作原理总结

    1 点阵取模原理之横向取模与纵向取模 1 1 针式打印机 针式打印机16针是纵向排列 每次打印垂直的16bit 然后右移一bit 继续下列打印 字节的MSB表示最上面的点 字节LSB表示最下面的点 由于汉字字模的点阵是横向排列的 而提供给打
  • STM32 基础系列教程 45 - FSMC_LCD_Touch

    前言 上一节我们完成了用 STM32F4的 FSMC接口来控制 TFTLCD的显示的操作 其实正点原子的探索者F4开发板带的屏幕支持触摸操作 笔者用的是4 3寸的电容触摸屏 本节我们继续实验 来完成基于STM32的触摸屏的实验 关于触摸屏的
  • 我所理解的DRM显示框架

    什么是DRM DRM全称是DirectRenderingManager 是linux主流的一种显示框架 支持多图层合成 为用户图层提供统一的API libdrm 来访问GPU 实现统一管理 它是为了解决多个程序对video card访问协同
  • 基于STM32F407的摄像头(不带FIFO的OV7670)图像采集及LCD显示实验-笔记整理

    硬件说明 STM32F4开发板 stm32f4系列的芯片处理的能力可以说非常强大了的 而且内部还自带有数字摄像头接口 DCMI 可以说stm32f407的核心板和不带FIFO的摄像头模块OV7670简直就是绝配 我手上的这块张这个样子 图片
  • Linux 帧缓冲子系统详解:LCD介绍、framebuffer驱动框架、LCD驱动源码分析

    1 LCD显示屏基础知识介绍 请看博客 嵌入式开发 S5PV210 LCD显示器 2 内核帧缓冲子系统 2 1 功能介绍 1 帧缓冲 framebuffer 是 Linux 为显示设备提供的一个接口 它把显示设备描述成一个缓冲 区 允许应用
  • 基于s5pv-210开发板 LCD驱动

    lcd硬件原理 利用液晶制成的显示器称为 LCD 依据驱动方式可分为静态驱动 简单矩阵驱动以及主动矩阵驱动 3 种 其中 简单矩阵型又可再细分扭转向列型 TN 和超扭转式向列型 STN 两种 而主动矩阵型则以薄膜式晶体管型 TFT 为主流
  • LCD DRM驱动框架分析一

    本文是基于rk3566 rk3568平台 从概念和框架上对LCD DRM驱动框架进行分析 一 DRM Direct Rendering Manager 简介 DRM 是 Linux 目前主流的图形显示框架 相比 FB 架构 DRM 更能适应
  • Lcd(一)显示原理

    一 LCD控制原理 S5PV210处理器中自带LCD控制器 控制LCD的显示 把 LCD 图像数据从一个位于系统内存的 video buffer 传送到一个外部的 LCD 驱动器接口 类型 1 STN 超扭曲向列 它的特点是功耗低 但亮度不
  • 00.mipi协议

    mipi差分信号原理 理解mipi协议 MIPI DSI LP mode命令及格式详解 MIPI信号的分析 结合示波器实际测试波形 MIPI 移动行业处理器接口 是Mobile Industry Processor Interface的缩写
  • Raspberry Pi上设置I2C LCD

    在本教程中 我将向您展示使用I2C设置LCD所需的一切 连接LCD I2C也被称为两线接口 因为它仅使用两根线来发送和接收数据 实际上 如果算上Vcc和地线 则是4线 但是电源始终可以来自其他来源 连接启用I2C的LCD 将LCD与I2C背

随机推荐