二进制部署Kubernetes

2023-10-31

操作系统 
centos7.5_x86
docker 19ce
软件
Kubernetes  1.18
角色
k8s-master1  192.168.31.71  组件: kube-apiserver,kube-controller-manager,kube-scheduler
k8s-node1    192.168.31.72  组件:kubelet,kube-proxy,docker etcd 
k8s-node2    192.168.31.73  组件:kubelet,kube-proxy,docker,etcd


操作系统初始化配置

关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
关闭selinux
sed -i 's/enforcing/disabled/' /etc/selinux/config  # 永久

关闭swap
sed -ri 's/.*swap.*/#&/' /etc/fstab    # 永久

 根据规划设置主机名
hostnamectl set-hostname <hostname> && exit /bin/bash

在master添加hosts
cat >> /etc/hosts << EOF
192.168.31.71 k8s-master
192.168.31.72 k8s-node1
192.168.31.73 k8s-node2
EOF

 将桥接的IPv4流量传递到iptables的链
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

sysctl --system  # 生效

时间同步
yum install ntpdate -y
ntpdate time.windows.com


二、部署Etcd集群
Etcd 是一个分布式键值存储系统,Kubernetes使用Etcd进行数据存储,所以先准备一个Etcd数据库,为解决Etcd单点故障,应采用集群方式部署,这里使用3台组建集群,可容忍1台机器故障,当然,你也可以使用5台组建集群,可容忍2台机器故障。
etcd-1  192.168.31.71
etcd-2  192.168.31.72
etcd-3  192.168.31.73

2.1 准备cfssl证书生成工具
cfssl是一个开源的证书管理工具,使用json文件生成证书,相比openssl更方便使用。
找任意一台服务器操作,这里用Master节点。
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

2.2 生成Etcd证书
1. 自签证书颁发机构(CA)
创建工作目录:
mkdir -p ~/TLS/{etcd,k8s}

cd TLS/etcd
自签CA:
cat > ca-config.json << EOF
{
  "signing": {
    "default": {
      "expiry": "87600h"
    },
    "profiles": {
      "www": {
         "expiry": "87600h",
         "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ]
      }
    }
  }
}
EOF

cat > ca-csr.json << EOF
{
    "CN": "etcd CA",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "Beijing",
            "ST": "Beijing"
        }
    ]
}
EOF

生成证书:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

ls *pem
ca-key.pem  ca.pem

2. 使用自签CA签发Etcd HTTPS证书
创建证书申请文件:
cat > server-csr.json << EOF
{
    "CN": "etcd",
    "hosts": [
    "192.168.31.71",
    "192.168.31.72",
    "192.168.31.73"
    ],
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "BeiJing",
            "ST": "BeiJing"
        }
    ]
}
EOF
注:上述文件hosts字段中IP为所有etcd节点的集群内部通信IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。

生成证书:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
ls server*pem
server-key.pem  server.pem

2.3 从Github下载二进制文件
下载地址:https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz

2.4 部署Etcd集群
以下在节点1上操作,为简化操作,待会将节点1生成的所有文件拷贝到节点2和节点3.
1. 创建工作目录并解压二进制包
mkdir /opt/etcd/{bin,cfg,ssl} -p
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
mv etcd-v3.4.9-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/

2. 创建etcd配置文件
cat > /opt/etcd/cfg/etcd.conf << EOF
#[Member]
ETCD_NAME="etcd-1"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.31.71:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.31.71:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.31.71:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.31.71:2379"
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.31.71:2380,etcd-2=https://192.168.31.72:2380,etcd-3=https://192.168.31.73:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF

ETCD_NAME:节点名称,集群中唯一
ETCD_DATA_DIR:数据目录
ETCD_LISTEN_PEER_URLS:集群通信监听地址
ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址
ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址
ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址
ETCD_INITIAL_CLUSTER:集群节点地址
ETCD_INITIAL_CLUSTER_TOKEN:集群Token
ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群

3. systemd管理etcd
cat > /usr/lib/systemd/system/etcd.service << EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=/opt/etcd/cfg/etcd.conf
ExecStart=/opt/etcd/bin/etcd \
--cert-file=/opt/etcd/ssl/server.pem \
--key-file=/opt/etcd/ssl/server-key.pem \
--peer-cert-file=/opt/etcd/ssl/server.pem \
--peer-key-file=/opt/etcd/ssl/server-key.pem \
--trusted-ca-file=/opt/etcd/ssl/ca.pem \
--peer-trusted-ca-file=/opt/etcd/ssl/ca.pem \
--logger=zap
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF

4. 拷贝刚才生成的证书
把刚才生成的证书拷贝到配置文件中的路径:
cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/ssl/

5. 启动并设置开机启动
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd

6. 将上面节点1所有生成的文件拷贝到节点2和节点3
scp -r /opt/etcd/ root@192.168.31.72:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.31.72:/usr/lib/systemd/system/
scp -r /opt/etcd/ root@192.168.31.73:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.31.73:/usr/lib/systemd/system/

然后在节点2和节点3分别修改etcd.conf配置文件中的节点名称和当前服务器IP:
vi /opt/etcd/cfg/etcd.conf
#[Member]
ETCD_NAME="etcd-1"   # 修改此处,节点2改为etcd-2,节点3改为etcd-3
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.31.71:2380"   # 修改此处为当前服务器IP
ETCD_LISTEN_CLIENT_URLS="https://192.168.31.71:2379" # 修改此处为当前服务器IP

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.31.71:2380" # 修改此处为当前服务器IP
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.31.71:2379" # 修改此处为当前服务器IP
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.31.71:2380,etcd-2=https://192.168.31.72:2380,etcd-3=https://192.168.31.73:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
最后启动etcd并设置开机启动,同上。

7. 查看集群状态
TCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.31.71:2379,https://192.168.31.72:2379,https://192.168.31.73:2379" endpoint health

https://192.168.31.71:2379 is healthy: successfully committed proposal: took = 8.154404ms
https://192.168.31.73:2379 is healthy: successfully committed proposal: took = 9.044117ms
https://192.168.31.72:2379 is healthy: successfully committed proposal: took = 10.000825ms

如果输出上面信息,就说明集群部署成功。如果有问题第一步先看日志:/var/log/message 或 journalctl -u etcd

三、安装Docker
下载地址:https://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz
以下在所有节点操作。这里采用二进制安装,用yum安装也一样。
3.1 解压二进制包
tar zxvf docker-19.03.9.tgz
mv docker/* /usr/bin

3.2 systemd管理docker
cat > /usr/lib/systemd/system/docker.service << EOF
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target
[Service]
Type=notify
ExecStart=/usr/bin/dockerd
ExecReload=/bin/kill -s HUP $MAINPID
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
TimeoutStartSec=0
Delegate=yes
KillMode=process
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s
[Install]
WantedBy=multi-user.target
EOF

3.3 创建配置文件
mkdir /etc/docker
cat > /etc/docker/daemon.json << EOF
{
  "registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"]
}
EOF
registry-mirrors 阿里云镜像加速器

3.4 启动并设置开机启动

systemctl daemon-reload
systemctl start docker
systemctl enable docker

四、部署Master Node
4.1 生成kube-apiserver证书
1. 自签证书颁发机构(CA)
cat > ca-config.json << EOF
{
  "signing": {
    "default": {
      "expiry": "87600h"
    },
    "profiles": {
      "kubernetes": {
         "expiry": "87600h",
         "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ]
      }
    }
  }
}
EOF
cat > ca-csr.json << EOF
{
    "CN": "kubernetes",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "Beijing",
            "ST": "Beijing",
            "O": "k8s",
            "OU": "System"
        }
    ]
}
EOF

cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
ls *pem
ca-key.pem  ca.pem

2. 使用自签CA签发kube-apiserver HTTPS证书
创建证书申请文件:
cd TLS/k8s
cat > server-csr.json << EOF
{
    "CN": "kubernetes",
    "hosts": [
      "10.0.0.1",
      "127.0.0.1",
      "192.168.31.71",
      "192.168.31.72",
      "192.168.31.73",
      "192.168.31.74",
      "192.168.31.81",
      "192.168.31.82",
      "192.168.31.88",
      "kubernetes",
      "kubernetes.default",
      "kubernetes.default.svc",
      "kubernetes.default.svc.cluster",
      "kubernetes.default.svc.cluster.local"
    ],
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "BeiJing",
            "ST": "BeiJing",
            "O": "k8s",
            "OU": "System"
        }
    ]
}
EOF
注:上述文件hosts字段中IP为所有Master/LB/VIP IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。
生成证书:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server

ls server*pem
server-key.pem  server.pem

4.2 从Github下载二进制文件
下载地址: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.18.md#v1183
注:打开链接你会发现里面有很多包,下载一个server包就够了,包含了Master和Worker Node二进制文件。

4.3 解压二进制包
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs} 
tar zxvf kubernetes-server-linux-amd64.tar.gz
cd kubernetes/server/bin
cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin
cp kubectl /usr/bin/

4.4 部署kube-apiserver
1. 创建配置文件
cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF
KUBE_APISERVER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--etcd-servers=https://192.168.31.71:2379,https://192.168.31.72:2379,https://192.168.31.73:2379 \\
--bind-address=192.168.31.71 \\
--secure-port=6443 \\
--advertise-address=192.168.31.71 \\
--allow-privileged=true \\
--service-cluster-ip-range=10.0.0.0/24 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--enable-bootstrap-token-auth=true \\
--token-auth-file=/opt/kubernetes/cfg/token.csv \\
--service-node-port-range=30000-32767 \\
--kubelet-client-certificate=/opt/kubernetes/ssl/server.pem \\
--kubelet-client-key=/opt/kubernetes/ssl/server-key.pem \\
--tls-cert-file=/opt/kubernetes/ssl/server.pem  \\
--tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \\
--client-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--etcd-cafile=/opt/etcd/ssl/ca.pem \\
--etcd-certfile=/opt/etcd/ssl/server.pem \\
--etcd-keyfile=/opt/etcd/ssl/server-key.pem \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
EOF

注:上面两个\ \ 第一个是转义符,第二个是换行符,使用转义符是为了使用EOF保留换行符。
–logtostderr:启用日志
—v:日志等级
–log-dir:日志目录
–etcd-servers:etcd集群地址
–bind-address:监听地址
–secure-port:https安全端口
–advertise-address:集群通告地址
–allow-privileged:启用授权
–service-cluster-ip-range:Service虚拟IP地址段
–enable-admission-plugins:准入控制模块
–authorization-mode:认证授权,启用RBAC授权和节点自管理
–enable-bootstrap-token-auth:启用TLS bootstrap机制
–token-auth-file:bootstrap token文件
–service-node-port-range:Service nodeport类型默认分配端口范围
–kubelet-client-xxx:apiserver访问kubelet客户端证书
–tls-xxx-file:apiserver https证书
–etcd-xxxfile:连接Etcd集群证书
–audit-log-xxx:审计日志
2. 拷贝刚才生成的证书
把刚才生成的证书拷贝到配置文件中的路径:
cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem /opt/kubernetes/ssl/

3. 启用 TLS Bootstrapping 机制
TLS Bootstraping:Master apiserver启用TLS认证后,Node节点kubelet和kube-proxy要与kube-apiserver进行通信,必须使用CA签发的有效证书才可以,当Node节点很多时,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化流程,Kubernetes引入了TLS bootstraping机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。所以强烈建议在Node上使用这种方式,目前主要用于kubelet,kube-proxy还是由我们统一颁发一个证书。
TLS bootstraping 工作流程:
创建上述配置文件中token文件:
cat > /opt/kubernetes/cfg/token.csv << EOF
c47ffb939f5ca36231d9e3121a252940,kubelet-bootstrap,10001,"system:node-bootstrapper"
EOF

格式:token,用户名,UID,用户组
token也可自行生成替换:
head -c 16 /dev/urandom | od -An -t x | tr -d ' '

4. systemd管理apiserver
cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf
ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

5. 启动并设置开机启动
systemctl daemon-reload
systemctl start kube-apiserver
systemctl enable kube-apiserver


6. 授权kubelet-bootstrap用户允许请求证书
kubectl create clusterrolebinding kubelet-bootstrap \
--clusterrole=system:node-bootstrapper \
--user=kubelet-bootstrap

4.5 部署kube-controller-manager
1. 创建配置文件
cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--master=127.0.0.1:8080 \\
--bind-address=127.0.0.1 \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem  \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--experimental-cluster-signing-duration=87600h0m0s"
EOF

–master:通过本地非安全本地端口8080连接apiserver。
–leader-elect:当该组件启动多个时,自动选举(HA)
–cluster-signing-cert-file/–cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致
2. systemd管理controller-manager
cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

3. 启动并设置开机启动
systemctl daemon-reload
systemctl start kube-controller-manager
systemctl enable kube-controller-manager

4.6 部署kube-scheduler
1. 创建配置文件
cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \
--v=2 \
--log-dir=/opt/kubernetes/logs \
--leader-elect \
--master=127.0.0.1:8080 \
--bind-address=127.0.0.1"
EOF

–master:通过本地非安全本地端口8080连接apiserver。
–leader-elect:当该组件启动多个时,自动选举(HA)
2. systemd管理scheduler
cat > /usr/lib/systemd/system/kube-scheduler.service << EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

3. 启动并设置开机启动
systemctl daemon-reload
systemctl start kube-scheduler
systemctl enable kube-scheduler

4. 查看集群状态
所有组件都已经启动成功,通过kubectl工具查看当前集群组件状态:


kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
scheduler            Healthy   ok                  
controller-manager   Healthy   ok                  
etcd-2               Healthy   {"health":"true"}   
etcd-1               Healthy   {"health":"true"}   
etcd-0               Healthy   {"health":"true"}  


如上输出说明Master节点组件运行正常。

五、部署Worker Node

5.1 创建工作目录并拷贝二进制文件

在所有worker node创建工作目录:
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs} 
从master节点拷贝:
cd kubernetes/server/bin
cp kubelet kube-proxy /opt/kubernetes/bin   # 本地拷贝

5.2 部署kubelet
1. 创建配置文件
cat > /opt/kubernetes/cfg/kubelet.conf << EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=k8s-master \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet-config.yml \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=lizhenliang/pause-amd64:3.0"
EOF

–hostname-override:显示名称,集群中唯一
–network-plugin:启用CNI
–kubeconfig:空路径,会自动生成,后面用于连接apiserver
–bootstrap-kubeconfig:首次启动向apiserver申请证书
–config:配置参数文件
–cert-dir:kubelet证书生成目录
–pod-infra-container-image:管理Pod网络容器的镜像

2. 配置参数文件
cat > /opt/kubernetes/cfg/kubelet-config.yml << EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: 0.0.0.0
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS:
- 10.0.0.2
clusterDomain: cluster.local 
failSwapOn: false
authentication:
  anonymous:
    enabled: false
  webhook:
    cacheTTL: 2m0s
    enabled: true
  x509:
    clientCAFile: /opt/kubernetes/ssl/ca.pem 
authorization:
  mode: Webhook
  webhook:
    cacheAuthorizedTTL: 5m0s
    cacheUnauthorizedTTL: 30s
evictionHard:
  imagefs.available: 15%
  memory.available: 100Mi
  nodefs.available: 10%
  nodefs.inodesFree: 5%
maxOpenFiles: 1000000
maxPods: 110
EOF

3. 生成bootstrap.kubeconfig文件
KUBE_APISERVER="https://192.168.31.71:6443" # apiserver IP:PORT
TOKEN="c47ffb939f5ca36231d9e3121a252940" # 与token.csv里保持一致

# 生成 kubelet bootstrap kubeconfig 配置文件
kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=bootstrap.kubeconfig
kubectl config set-credentials "kubelet-bootstrap" \
  --token=${TOKEN} \
  --kubeconfig=bootstrap.kubeconfig
kubectl config set-context default \
  --cluster=kubernetes \
  --user="kubelet-bootstrap" \
  --kubeconfig=bootstrap.kubeconfig
  kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
  拷贝到配置文件路径:
  cp bootstrap.kubeconfig /opt/kubernetes/cfg
  
  4. systemd管理kubelet
  cat > /usr/lib/systemd/system/kubelet.service << EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF

5. 启动并设置开机启动
systemctl daemon-reload
systemctl start kubelet
systemctl enable kubelet

5.3 批准kubelet证书申请并加入集群
kubectl get csr
NAME                                                   AGE    SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A   6m3s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

# 批准申请
kubectl certificate approve node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A


# 查看节点
kubectl get node
NAME         STATUS     ROLES    AGE   VERSION
k8s-master   NotReady   <none>   7s    v1.18.3

注:由于网络插件还没有部署,节点会没有准备就绪 NotReady
5.4 部署kube-proxy
1. 创建配置文件
cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--config=/opt/kubernetes/cfg/kube-proxy-config.yml"
EOF


2. 配置参数文件
cat > /opt/kubernetes/cfg/kube-proxy-config.yml << EOF
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
metricsBindAddress: 0.0.0.0:10249
clientConnection:
  kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
hostnameOverride: k8s-master
clusterCIDR: 10.0.0.0/24
EOF

3. 生成kube-proxy.kubeconfig文件
生成kube-proxy证书:
# 切换工作目录
cd TLS/k8s

# 创建证书请求文件
cat > kube-proxy-csr.json << EOF
{
  "CN": "system:kube-proxy",
  "hosts": [],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "L": "BeiJing",
      "ST": "BeiJing",
      "O": "k8s",
      "OU": "System"
    }
  ]
}
EOF

# 生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy

ls kube-proxy*pem
kube-proxy-key.pem  kube-proxy.pem

生成kubeconfig文件:
KUBE_APISERVER="https://192.168.31.71:6443"

kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config set-credentials kube-proxy \
  --client-certificate=./kube-proxy.pem \
  --client-key=./kube-proxy-key.pem \
  --embed-certs=true \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kube-proxy \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig

拷贝到配置文件指定路径:
cp kube-proxy.kubeconfig /opt/kubernetes/cfg/

4. systemd管理kube-proxy
cat > /usr/lib/systemd/system/kube-proxy.service << EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF

5. 启动并设置开机启动
systemctl daemon-reload
systemctl start kube-proxy
systemctl enable kube-proxy

5.5 部署CNI网络
先准备好CNI二进制文件:
下载地址:https://github.com/containernetworking/plugins/releases/download/v0.8.6/cni-plugins-linux-amd64-v0.8.6.tgz

解压二进制包并移动到默认工作目录:
mkdir /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
部署CNI网络:
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
sed -i -r "s#quay.io/coreos/flannel:.*-amd64#lizhenliang/flannel:v0.12.0-amd64#g" kube-flannel.yml

默认镜像地址无法访问,修改为docker hub镜像仓库
kubectl apply -f kube-flannel.yml
kubectl get pods -n kube-system
NAME                          READY   STATUS    RESTARTS   AGE
kube-flannel-ds-amd64-2pc95   1/1     Running   0          72s

kubectl get node
NAME         STATUS   ROLES    AGE   VERSION
k8s-master   Ready    <none>   41m   v1.18.3
部署好网络插件,Node准备就绪。

5.6 授权apiserver访问kubelet
cat > apiserver-to-kubelet-rbac.yaml << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
  name: system:kube-apiserver-to-kubelet
rules:
  - apiGroups:
      - ""
    resources:
      - nodes/proxy
      - nodes/stats
      - nodes/log
      - nodes/spec
      - nodes/metrics
      - pods/log
    verbs:
      - "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: system:kube-apiserver
  namespace: ""
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:kube-apiserver-to-kubelet
subjects:
  - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: kubernetes
EOF

kubectl apply -f apiserver-to-kubelet-rbac.yaml

5.7 新增加Worker Node
1. 拷贝已部署好的Node相关文件到新节点
在master节点将Worker Node涉及文件拷贝到新节点192.168.31.72/73
scp -r /opt/kubernetes root@192.168.31.72:/opt/
scp -r /usr/lib/systemd/system/{kubelet,kube-proxy}.service root@192.168.31.72:/usr/lib/systemd/system

scp -r /opt/cni/ root@192.168.31.72:/opt/

scp /opt/kubernetes/ssl/ca.pem root@192.168.31.72:/opt/kubernetes/ssl
2. 删除kubelet证书和kubeconfig文件
rm /opt/kubernetes/cfg/kubelet.kubeconfig 
rm -f /opt/kubernetes/ssl/kubelet*
注:这几个文件是证书申请审批后自动生成的,每个Node不同,必须删除重新生成。
3. 修改主机名
vi /opt/kubernetes/cfg/kubelet.conf
--hostname-override=k8s-node1

vi /opt/kubernetes/cfg/kube-proxy-config.yml
hostnameOverride: k8s-node1
systemctl daemon-reload
systemctl start kubelet
systemctl enable kubelet
systemctl start kube-proxy
systemctl enable kube-proxy

5. 在Master上批准新Node kubelet证书申请
kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro   89s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

kubectl certificate approve node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro

6. 查看Node状态

kubectl get node
NAME         STATUS     ROLES    AGE   VERSION
k8s-master   Ready      <none>   65m   v1.18.3
k8s-node1    Ready      <none>   12m   v1.18.3
k8s-node2    Ready      <none>   81s   v1.18.3

Node2(192.168.31.73 )节点同上。记得修改主机名!
六、部署Dashboard和CoreDNS
6.1 部署Dashboard
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta8/aio/deploy/recommended.yaml
默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
vi recommended.yaml
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001
  type: NodePort
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml
kubectl get pods,svc -n kubernetes-dashboard
NAME                                             READY   STATUS              RESTARTS   AGE
pod/dashboard-metrics-scraper-694557449d-z8gfb   1/1     Running             0          2m18s
pod/kubernetes-dashboard-9774cc786-q2gsx         1/1     Running             0          2m19s

NAME                                TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
service/dashboard-metrics-scraper   ClusterIP   10.0.0.141   <none>        8000/TCP        2m19s
service/kubernetes-dashboard        NodePort    10.0.0.239   <none>        443:30001/TCP   2m19s
访问地址:https://NodeIP:30001
创建service account并绑定默认cluster-admin管理员集群角色:
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

使用输出的token登录Dashboard。
6.2 部署CoreDNS
CoreDNS用于集群内部Service名称解析。
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s
kube-flannel-ds-amd64-2pc95   1/1     Running   0          38m
kube-flannel-ds-amd64-7qhdx   1/1     Running   0          15m
kube-flannel-ds-amd64-99cr8   1/1     Running   0          26m

DNS解析测试:
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.

/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

解析没问题。

  
  
  
  
  
  
  

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

二进制部署Kubernetes 的相关文章

  • 如何在不手动修改文件的情况下编辑部署?

    我已经为我的应用程序定义了一个部署 apiVersion extensions v1beta1 kind Deployment metadata name myapp deployment spec replicas 2 template
  • 如何在linux中以编程方式获取dir的大小?

    我想通过 C 程序获取 linux 中特定目录的确切大小 我尝试使用 statfs path struct statfs 但它没有给出确切的大小 我也尝试过 stat 但它返回任何目录的大小为 4096 请建议我如何获取 dir 的确切大小
  • Kubernetes Pod 预热以实现负载均衡

    我们有一个 Kubernetes 服务 其 Pod 需要一些时间来预热第一个请求 基本上 第一个传入请求将从 Redis 读取一些缓存值 并且这些请求可能需要更长的时间来处理 当这些新创建的 Pod 准备就绪并接收完整流量时 在从 Redi
  • GMail 421 4.7.0 稍后重试,关闭连接

    我试图找出为什么它无法使用 GMail 从我的服务器发送邮件 为此 我使用 SwiftMailer 但我可以将问题包含在以下独立代码中
  • 如何获取 (Linux) 机器的 IP 地址?

    这个问题和之前问的几乎一样如何获取本地计算机的IP地址 https stackoverflow com questions 122208 get the ip address of local computer 问题 但是我需要找到一个的I
  • 为什么 fopen("any_path_name",'r') 不给出 NULL 作为返回值?

    在调试一些代码时 我得到如下内容 include
  • CMake 链接 glfw3 lib 错误

    我正在使用 CLion 并且正在使用 glfw3 库编写一个程序 http www glfw org docs latest http www glfw org docs latest 我安装并正确执行了库中的所有操作 我有 a 和 h 文
  • .net-core:ILDASM / ILASM 的等效项

    net core 是否有相当于 ILDASM ILASM 的功能 具体来说 我正在寻找在 Linux 上运行的东西 因此为什么是 net core ildasm 和 ilasm 工具都是使用此存储库中的 CoreCLR 构建的 https
  • 静态方法的 Java 内存模型

    我来自操作系统和 C 语言背景 在代码编译时 世界很简单 需要处理和理解堆栈 堆文本部分等 当我开始学习 Java 时 我确实了解 JVM 和垃圾收集器 我对静态方法感到很有趣 根据我的理解 类的所有实例都会在堆中创建 然后被清理 但是 对
  • 配置tomat的server.xml文件并自动生成mod_jk.conf

    我在用apache 2 2 15 and tomcat6 6 0 24 on CentOS 6 4并希望使用 tomcat 服务器的功能 通过添加以下内容自动生成 mod jk conf 文件
  • 如何在 Linux 中使用 C 语言使用共享内存

    我的一个项目有点问题 我一直在试图找到一个有据可查的使用共享内存的例子fork 但没有成功 基本上情况是 当用户启动程序时 我需要在共享内存中存储两个值 当前路径这是一个char and a 文件名这也是char 根据命令参数 启动一个新进
  • Mac OS X 上的 /proc/self/cmdline / GetCommandLine 等效项是什么?

    如何在不使用 argc argv 的情况下访问 Mac OS X 上的命令行 在 Linux 上 我会简单地阅读 proc self cmdline or use GetCommandLine在 Windows 上 但我找不到 Mac OS
  • 使用 python 脚本更改 shell 中的工作目录

    我想实现一个用户态命令 它将采用其参数之一 路径 并将目录更改为该目录 程序完成后 我希望 shell 位于该目录中 所以我想实施cd命令 但需要外部程序 可以在 python 脚本中完成还是我必须编写 bash 包装器 Example t
  • 绕过 dev/urandom|random 进行测试

    我想编写一个功能测试用例 用已知的随机数值来测试程序 我已经在单元测试期间用模拟对其进行了测试 但我也希望用于功能测试 当然不是全部 最简单的方法是什么 dev urandom仅覆盖一个进程 有没有办法做类似的事情chroot对于单个文件并
  • 如何在 *nix 中登录时运行脚本?

    我知道我曾经知道如何做到这一点 但是 如何在 unix 中登录时运行脚本 bash 可以 From 维基百科 Bash http en wikipedia org wiki Bash 28Unix shell 29 当 Bash 启动时 它
  • Linux 为一组进程保留一个处理器(动态)

    有没有办法将处理器排除在正常调度之外 也就是说 使用sched setaffinity我可以指示线程应该在哪个处理器上运行 但我正在寻找相反的情况 也就是说 我想从正常调度中排除给定的处理器 以便只有已明确调度的进程才能在那里运行 我还知道
  • Linux/POSIX:为什么 fork() 不分叉*所有*线程

    众所周知 POSIX下创建新进程的默认方式是使用fork 在 Linux 下 这在内部映射到clone 我想知道的是 众所周知 当一个人打电话时fork 子进程是用单个线程创建的 调用的线程fork cf https linux die n
  • Apache 访问 Linux 中的 NTFS 链接文件夹

    在 Debian jessie 中使用 Apache2 PHP 当我想在 Apache 的文档文件夹 var www 中创建一个新的小节时 我只需创建一个指向我的 php 文件所在的外部文件夹的链接 然后只需更改该文件夹的所有者和权限文件夹
  • 尽管我已在 python ctypes 中设置了信号处理程序,但并未调用它

    我尝试过使用 sigaction 和 ctypes 设置信号处理程序 我知道它可以与python中的信号模块一起使用 但我想尝试学习 当我向该进程发送 SIGTERM 时 但它没有调用我设置的处理程序 只打印 终止 为什么它不调用处理程序
  • 从 Linux 内核模块中调用用户空间函数

    我正在编写一个简单的 Linux 字符设备驱动程序 以通过 I O 端口将数据输出到硬件 我有一个执行浮点运算的函数来计算硬件的正确输出 不幸的是 这意味着我需要将此函数保留在用户空间中 因为 Linux 内核不能很好地处理浮点运算 这是设

随机推荐

  • 记录好项目D13

    记录好项目 你好呀 这里是我专门记录一下从某些地方收集起来的项目 对项目修改 进行添砖加瓦 变成自己的闪亮项目 修修补补也可以成为毕设哦 本次的项目是个宠物商城系统 一 系统介绍 未注册用户 非注册用户 即游客身份 进入宠物官网首页 可以浏
  • redis-cli

    文章目录 集群中手动切换节点 xac xed 问题 查看集群节点 集群中手动切换节点 connect host port xac xed 问题 首先出现这个现象是因为序列化器没设置好 直接 get xac xed x00 x05t x00
  • Python os.walk 遍历指定深度的方法

    用os walk可以遍历多层目录 但是有时需要只遍历指定层数目录 比如 要获取某个目录的1级和2级子目录 可以用下面的方法 coding UTF 8 Python 3 6 import os def get sub dirs root pa
  • xss-labs靶场训练(1~4关)

    第一关 前端F12查看代码 这里只能看到参数test输出在h2里面 可以尝试直接构造payload 成功 后台关键源码 这里是以GET方法获取参数name 并直接输出 没有任何过滤或转义 第二关 尝试上一关的方法 Payload没有执行成功
  • 第四十七节 C++ 匿名函数对象 - lambda 表达式

    函数对象 函数的对象 实现operator 常用于算法中 详见上一节函数对象的讲解 lambda表达式属于函数对象 但其是匿名的 分为 1 一元函数的lambda表达式 不使用捕获列表 使用捕获列表 2 一元谓词的lambda表达式 不使用
  • linux shell脚本双引号转义,Linux Shell脚本中单引号(‘)和双引号(“)的区别

    在Linux操作系统上编写Shell脚本时候 我们是在变量的前面使用 符号来获取该变量的值 通常在脚本中使用 param 这种带双引号的格式 但也有出现使用 param 这种带引号的使用的场景 首先大家看一段例子 root linux na
  • JAVA代码保护工具DashO Pro v10.0.0 Beta 2重磅上线!更新DashO Gradle插件!

    DashO是一个Java和Android的混用程序 它提供企业级应用的加固和屏蔽 大大降低了知识产权盗窃 数据盗窃 盗版和篡改的风险 分层混淆 加密 水印 自动失效 反调试 反篡改 反仿真器 反挂钩 反根设备解决方案 为世界各地的应用程序提
  • 单片机毕业设计 stm32智能电子秤系统设计与实现 - 物联网 嵌入式

    文章目录 0 前言 1 简介 2 主要器件 3 实现效果 4 设计原理 4 1 STM32F103C8T6 4 2 HX711压力传感器 5 部分核心代码 6 最后 0 前言 这两年开始毕业设计和毕业答辩的要求和难度不断提升 传统的毕设题目
  • Simulink Simscape基础仿真电路

    在网上找了挺多关于MATLAB Simulink simscape仿真电路的资料都没有自己想要的 大都是Sympowersystem的教程 最后还是上了YouTube观看了一些教程 现在做下学习记录 由于我电脑上安装了2016和2010两个
  • 身份和访问管理解决方案:混合型IAM

    对于依赖于本地 IT 基础结构和传统安全模型的组织 可以更轻松地验证和授权企业网络内的所有内容 包括设备 用户 应用程序和服务器 尝试从公司网络外部获取访问权限的用户使用虚拟专用网络 VPN 和网络访问控制 NAC 进行身份验证 随着云和远
  • java中equals的重写_Java重写equals方法(重点讲解)

    为什么equals 方法要重写 判断两个对象在逻辑上是否相等 如根据类的成员变量来判断两个类的实例是否相等 而继承Object中的equals方法只能判断两个引用变量是否是同一个对象 这样我们往往需要重写equals 方法 我们向一个没有重
  • Hadoop-The variance for this alert is **MB which is 20% of the **MB average (**MB is the limit)

    The variance for this alert is MB which is 20 of the MB average MB is the limit 1 调整如下阀值 2 检查HDFS文件系统使用率 清空HDFS上的 trash垃
  • SpringBoot+ftp 实现文件的上传、下载与删除

    SpringBoot ftp 实现文件的上传 下载与删除 一 引包 二 配置 三 代码 3 1配置类 3 2 接口服务 3 3controller层示例 不做过多解释 可移植 比较简单方便 一 引包 3 8 0是目前最新的 除非重大更新 基
  • Python基础——常见数据类型总结

    在Python中常见的数据类型有以下8个类型 分别是 int 整数类型 整形 float 浮点类型 浮点型 bool 布尔类型 str 字符串类型 list 列表类型 tuple 元组类型 dict 字典类型 set 集合类型 接下来一一展
  • hdd和虚拟服务器区别,Docker容器与虚拟机的区别

    我曾经将Docker容器视为轻量级 精简的虚拟机 进行这种比较是有道理的 因为至少在Docker的最初市场中 总是将其与虚拟机进行比较 例如 Docker花费的启动时间少于VM 等等 但是docker容器不是虚拟机 让我们对Docker容器
  • java redis cluster_Redis的cluster模式

    Redis集群是Redis提供的分布式数据库方案 集群通过分片 Sharding 来进行数据共享 并提供复制和故障转移功能 节点 一个节点就是一个运行在集群模式下的Redis服务器 Redis服务器在启动的时候会根据cluster enab
  • ERROR: Could not build wheels for pycocotools, lap, which is required to install pyproject.toml-base

    python 在windows系统上安装pycocotools lap是出现无法安装的情况 报错如下 原因是缺少C 的编译工具 并且pycocotools需要安装windows版本 解决步骤 1 下载BuildTools 下载地址 Buil
  • Spark学习之机器学习包ML

    Spark的ML软件包 其操作是基于DataFrame的 ML包括转换器 Transformer 评估器 Estimator 管道 Pipeline 1 转换器 Transformer 通常是将一个新列附加到DataFrame来转换数据 从
  • React入门

    目录 React简介 官网 介绍描述 React的特点 React高效的原因 React的基本使用 效果 相关js库 创建虚拟DOM的两种方式 虚拟DOM与真实DOM React JSX XML JSON JSX 渲染虚拟DOM 元素 JS
  • 二进制部署Kubernetes

    操作系统 centos7 5 x86 docker 19ce 软件 Kubernetes 1 18 角色 k8s master1 192 168 31 71 组件 kube apiserver kube controller manager