计算机网络(5)TCP之重传机制

2023-05-16

在这里插入图片描述

重传机制

  • 超时重传
      • 数据包丢失
      • 确认应答丢失
  • 快速重传
  • SACK
  • D-SACK
      • 例一;ACK 丢包
      • 例2:网络延时

TCP 是通过序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输的。

TCP 实现可靠传输的方式之一,是通过序列号与确认应答。
在 TCP 中,当发送端的数据到达接收主机时,接收端主机会返回一个确认应答消息,表示已收到消息。
在这里插入图片描述
但在错综复杂的网络,并不一定能如上图那么顺利能正常的数据传输,万一数据在传输过程中丢失了呢?
所以 TCP 针对数据包丢失的情况,会用重传机制解决。
接下来说说常见的重传机制:

超时重传

重传机制的其中一个方式,就是在发送数据时,设定一个定时器,当超过指定的时间后,没有收到对方的 ACK 确认应答报文,就会重发该数据,也就是我们常说的超时重传。
TCP 会在以下两种情况发生超时重传:

数据包丢失

确认应答丢失

在这里插入图片描述

超时时间应该设置为多少呢?

我们先来了解一下什么是 RTT(Round-Trip Time 往返时延),从下图我们就可以知道:
RTT

RTT 就是数据从网络一端传送到另一端所需的时间,也就是包的往返时间。
超时重传时间是以 RTO (Retransmission Timeout 超时重传时间)表示。
假设在重传的情况下,超时时间 RTO 「较长或较短」时,会发生什么事情呢?
在这里插入图片描述

上图中有两种超时时间不同的情况:

1.当超时时间 RTO 较大时,重发就慢,丢了老半天才重发,没有效率,性能差;
2.当超时时间 RTO 较小时,会导致可能并没有丢就重发,于是重发的就快,会增加网络拥塞,导致更多的超时,更多的超时导致更多的重发。
精确的测量超时时间 RTO 的值是非常重要的,这可让我们的重传机制更高效。

根据上述的两种情况,我们可以得知,超时重传时间 RTO 的值应该略大于报文往返 RTT 的值。

在这里插入图片描述
至此,可能大家觉得超时重传时间 RTO 的值计算,也不是很复杂嘛。
好像就是在发送端发包时记下 t0 ,然后接收端再把这个 ack 回来时再记一个 t1,于是 RTT = t1 – t0。没那么简单,这只是一个采样,不能代表普遍情况。
实际上「报文往返 RTT 的值」是经常变化的,因为我们的网络也是时常变化的。也就因为「报文往返 RTT 的值」 是经常波动变化的,所以「超时重传时间 RTO 的值」应该是一个动态变化的值。

超时触发重传存在的问题是,超时周期可能相对较长。那是不是可以有更快的方式呢? 于是就可以用「快速重传」机制来解决超时重发的时间等待。

快速重传

TCP 还有另外一种快速重传(Fast Retransmit)机制,它不以时间为驱动,而是以数据驱动重传
快速重传机制,是如何工作的呢?
在这里插入图片描述
在上图,发送方发出了 1,2,3,4,5 份数据:

1.第一份 Seq1 先送到了,于是就 Ack 回 2;
2.结果 Seq2 因为某些原因没收到,Seq3 到达了,于是还是 Ack 回 2;
3.后面的 Seq4 和 Seq5 都到了,但还是 Ack 回 2,因为 Seq2 还是没有收到;
4.发送端收到了三个 Ack = 2 的确认,知道了 Seq2 还没有收到,就会在定时器过期之前,重传丢失的 Seq2。
5.最后,收到了 Seq2,此时因为 Seq3,Seq4,Seq5 都收到了,于是 Ack 回 6 。

所以,快速重传的工作方式是当收到三个相同的 ACK 报文时,会在定时器过期之前,重传丢失的报文段

快速重传机制只解决了一个问题,就是超时时间的问题,但是它依然面临着另外一个问题。就是重传的时候,是重传之前的一个,还是重传所有的问题。
比如对于上面的例子,是重传 Seq2 呢?还是重传 Seq2、Seq3、Seq4、Seq5 呢?因为发送端并不清楚这连续的三个 Ack 2
是谁传回来的。 根据 TCP 不同的实现,以上两种情况都是有可能的。可见,这是一把双刃剑。 为了解决不知道该重传哪些 TCP 报文,于是就有了SACK 方法

SACK

还有一种实现重传机制的方式叫:SACK( Selective Acknowledgment 选择性确认)。
这种方式需要在 TCP 头部「选项」字段里加一个 SACK 的东西,它可以将缓存的地图发送给发送方,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以只重传丢失的数据
如下图,发送方收到了三次同样的 ACK 确认报文,于是就会触发快速重发机制,通过 SACK 信息发现只有 200~299 这段数据丢失,则重发时,就只选择了这个 TCP 段进行重复。
在这里插入图片描述

D-SACK

Duplicate SACK 又称 D-SACK,其主要使用了 SACK 来告诉「发送方」有哪些数据被重复接收了。

例一;ACK 丢包

在这里插入图片描述
「接收方」发给「发送方」的两个 ACK 确认应答都丢失了,所以发送方超时后,重传第一个数据包(3000 ~ 3499)

于是「接收方」发现数据是重复收到的,于是回了一个 SACK = 3000~3500,告诉「发送方」 3000~3500 的数据早已被接收了,因为 ACK 都到了 4000 了,已经意味着 4000 之前的所有数据都已收到,所以这个 SACK 就代表着 D-SACK。

这样「发送方」就知道了,数据没有丢,是「接收方」的 ACK 确认报文丢了

例2:网络延时

在这里插入图片描述
1.数据包(1000~1499) 被网络延迟了,导致「发送方」没有收到 Ack 1500 的确认报文。
2.而后面报文到达的三个相同的 ACK 确认报文,就触发了快速重传机制,但是在重传后,被延迟的数据包(1000~1499)又到了「接收方」;
3.所以「接收方」回了一个 SACK=1000~1500,因为 ACK 已经到了 3000,所以这个 SACK 是 D-SACK,表示收到了重复的包。
4.这样发送方就知道快速重传触发的原因不是发出去的包丢了,也不是因为回应的 ACK 包丢了,而是因为网络延迟了。

可见,D-SACK 有这么几个好处: 1. 可以让「发送方」知道,是发出去的包丢了,还是接收方回应的 ACK 包丢了; 2. 可以知道是不是「发送方」的数据包被网络延迟了; 3. 可以知道网络中是不是把「发送方」的数据包给复制了;

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

计算机网络(5)TCP之重传机制 的相关文章

  • 在 Golang Server 中接受持久的 tcp 连接

    我正在尝试使用 Go 并且想创建一个 TCP 服务器 我可以通过 telnet 访问该服务器 发送命令并接收响应 const CONN HOST localhost CONN PORT 3333 CONN TYPE tcp func mai
  • 发起TCP连接关闭后如何接收数据?

    TCP 允许一侧发出 FIN 并让另一侧在结束其一侧的连接之前响应一些数据 我如何使用 NET 来实现这一点TcpClient 看来我必须使用Close发出FIN 但之后我不能再打电话Client Receive since Client被
  • 视频流上的 TCP 与 UDP

    我刚从网络编程考试回来 他们问我们的问题之一是 如果您要传输视频 您会使用 TCP 还是 UDP 请解释一下存储视频和实时视频流 对于这个问题 他们只是希望得到一个简短的答案 TCP 用于存储视频 UDP 用于实时视频 但我在回家的路上想到
  • iOS 上的多个 HTTP 请求与单个 TCP 连接

    我正在开发一个 iPhone 应用程序 它使用我控制的基于 Web 的 API 连接到持续打开的 TCP 端口并通过 TCP API 发出请求 或者为我想要获取的所有数据发出新的 HTTP 请求 会更快或更高效吗 我认为差异可以忽略不计 但
  • TcpClient 在异步读取期间断开连接

    我有几个关于完成 tcp 连接的问题 客户端使用 Tcp 连接到我的服务器 在接受客户端后listener BeginAcceptTcpClient ConnectionEstabilishedCallback null 我开始阅读netw
  • 如何强制关闭 TcpListener

    我有一个通过 tcpListener 进行通信的服务 问题是当用户重新启动服务时 抛出 地址已在使用 异常 并且服务在几分钟左右无法启动 有没有办法告诉系统终止旧连接 以便我可以打开一个新连接 我不能只使用随机端口 因为服务无法通知客户端端
  • 使用 boost 异步发送和接收自定义数据包?

    我正在尝试使用 boost 异步发送和接收自定义数据包 根据我当前的实现 我有一些问题 tcpclient cpp include tcpclient h include
  • Erlang gen_tcp 连接问题

    简单的问题 这段代码 client gt SomeHostInNet localhost to make it runnable on one machine ok Sock gen tcp connect SomeHostInNet 56
  • 为什么tcp终止需要4次握手?

    当连接建立时 有 客户端 SYN gt 服务器 客户端 客户端 ACK gt 服务器 当终止到来时 有 客户端 FIN gt 服务器 客户端 客户端 客户端 ACK gt 服务器 我的问题是为什么 和 不能像 那样设置在同一个包中 即ACK
  • ADB TCPIP 连接问题

    我有两台 Galaxy S3 其中一个已扎根 另一个则未扎根 因此 当我尝试通过本地网络连接它们时 计算机可以看到已root的计算机 但是正常的就卡在tcpip这一步了 所以 我写 adb tcpip 5555 It says restar
  • 套接字编程-listen() 和accept() 有什么区别?

    我一直在读本教程 http www cs rpi edu moorthy Courses os98 Pgms socket html了解套接字编程 看来listen and accept 系统调用都做同样的事情 即阻塞并等待客户端连接到使用
  • 了解 netty 通道缓冲区和水印

    我正在尝试了解网络缓冲区和水印 作为一个测试用例 我有一个 netty 服务器 它向客户端写入数据 客户端被阻止 基本上每次读取之间有 10 秒的睡眠时间 在正常 I O 下 如果接收方被阻塞 TCP 发送方将受到限制 由于流量控制 发送速
  • 用 C 语言进行非阻塞 udp 套接字编程:我能得到什么?

    我在理解从非阻塞 UDP 套接字返回什么recv recvfrom 时遇到问题 与 TCP 相比更具体一点 如果我错了 请纠正我 阻塞套接字 TCP 或 UDP 在缓冲区中有一些数据之前不会从 recv 返回 这可以是一定数量的字节 TCP
  • TCP 中推送标志和紧急标志之间的区别

    我试图理解带有标志的 TCP 段之间的区别PSH和旗帜URG 我阅读了 RFC 但仍然无法获取它 其中一个在将数据发送到进程之前是否缓冲数据 而另一个则没有 它们是两种截然不同的机制 PSH 和 PUSH 函数 当您发送数据时 您的TCP缓
  • 如何使用C从http下载文件?

    最近几天我试图弄清楚如何从 URL 下载文件 这是我对套接字的第一个挑战 我用它来了解协议 所以我想在没有 cURL 库的情况下只用 C 语言来完成它 我搜索了很多 现在我可以打印页面的源代码 但我认为这与文件不同 我不必只将接收到的数据从
  • NodeJS:TCP套接字服务器仅在第一次返回数据

    我正在尝试在 node js 中编写一个小型中继脚本 用于侦听本地套接字上传入的 TCP 连接 当它收到连接时 将流量转发给第三方 它还必须从该第三方获取任何返回的数据并将其发送回原始本地套接字 我试过类似的代码http delog wor
  • 服务器套接字在 Close_Wait 中挂起

    场景如下 我正在从 C 服务器应用程序向客户端发送大量数据 突然数据流停止 客户端没有数据更新并且端口被阻塞 发生这种情况时 服务器端症状是 Close Wait 在该端口 netstat 操作将在日志中阻塞 错误代码 135 无法从客户端
  • 具有非阻塞或多线程功能的 Ruby Tcp Server 类

    找不到任何可以帮助创建非阻塞 多线程服务器的 gem 或类 哪里可以找到 The Ruby 文档 http ruby doc org core classes Socket html M002091关于套接字有一些很好的例子 使用该页面中的
  • 10G 链路的 netcat 和 iperf 结果存在巨大差异

    我很困惑看到 netcat 和 iperf 结果之间的巨大差异 我有 10 G 链路连接我的服务器和客户端 iperf 的速度约为 10Gb s 但 netcat 的速度仅为约 280 MB s 可能是什么错误 对于 Iperf Serve
  • 确定 TCP Listen() 队列中当前积压的连接数

    有没有办法找出currentLinux 上 TCP 套接字上等待 Accept 的连接尝试次数 我想我可以在每个事件循环上点击 EWOULDBLOCK 之前计算成功的 Accept 数量 但我使用的是隐藏这些细节的高级库 Python Tw

随机推荐

  • 在windows上用vscode打造比vc++6.0好用的C/C++ IDE,适用编程小白

    准备 xff1a 1 安装MinGW xff0c 添加gcc gdb等编译调试工具bin目录 头文件Include目录 库lib的路径到系统环境变量 xff0c 安装LLVM 添 加Clang编译器所在bin目录到系统环境变量 具体操作百度
  • C语言数据结构——线性表的链式存储结构

    文章目录 线性表的链式存储结构1 基本概念2 设计与实现3 优点和缺点 线性表的链式存储结构 1 基本概念 链式存储定义 xff1a 为了表示每个数据元素与其直接后继元素之间的逻辑关系 xff0c 每个元素除了存储本身的信息之外 xff0c
  • 智能车浅谈——硬件篇

    目录 初识小车硬件系统1 电源系统线性电源开关电源 2 人机交互系统3 MCU最小系统4 传感器系统摄像头电感编码器 5 驱动系统 机械结构 17届完赛代码智能车系列文章汇总 前言 xff1a 作为一名老三本玩家 xff0c 笔者深知一些同
  • 智能车浅谈——图像篇

    文章目录 前言认识图像基本含义图像类型数字图像彩色图像灰度图像黑白图像 小结 图像处理图像压缩二值化固定阈值法大津法 图像降噪 xff08 腐蚀 xff09 寻边线 总结17届完赛代码17届完赛代码智能车系列文章汇总 前言 前面已经记录了智
  • 智能车浅谈——手把手让车跑起来(电磁篇)

    文章目录 前言材料准备备赛组车模硬件 练习组车模硬件方案 整车原理赛道信息获取及转向原理工字电感运放模块转向原理元素判断 电机及舵机控制原理 代码实现效果欣赏总结17届完赛代码智能车系列文章汇总 前言 电磁寻迹小车 之前智能车系列已经做了一
  • 手把手教你OneNET数据可视化

    文章目录 前言OneNET实现数据可视化效果一览发布项目 xff08 5 17更新 xff09 总结 前言 之前介绍了Hi3861使用MQTT协议接入OneNET实现数据的上传以及命令的下发 xff0c 本文主要是介绍一下如何使用OneNE
  • linux---进程间通信(ipc)之管道

    进程间通信方式 管道共享内存消息队列信号量本地套接字等等都能作为我们进程间通信的方法 操作系统提供进程间通信方式的原因 因为对于我们进程来说 xff0c 每一个进程都是相互独立的 xff0c 具有独立性 xff0c 如果我们需要两个不同的进
  • 嵌入式学习笔记——STM32的USART收发字符串及串口中断

    USART收发字符串及串口中断 前言字符串的收发发送一个字符串接收字符串需求 利用串口实现printf 中断中断是什么串口的接收中断以及空闲中断实现代码实现效果 总结M4系列目录 前言 上一篇中 xff0c 介绍了串口收发相关的寄存器 xf
  • 嵌入式学习笔记——PWM与输入捕获(下)

    输入捕获 前言输入捕获的概述框图输入通道部分比较捕获寄存器与事件生成 寄存器编程思路 实际需求配置流程打开对应的时钟配置GPIO为复用模式定时器的时基部分配置定时器输入通道部分配置定时器中断配置 代码 xff1a 运行效果 xff1a 需求
  • 嵌入式学习笔记——SPI通信的应用

    SPI通信的应用 前言屏幕分类1 3OLED概述驱动芯片框图原理图通信时序显示的方式页地址 列地址初始化指令 程序设计初始化代码初始化写数据与写命令清屏函数 初始化代码字符显示函数 总结M4系列目录 前言 上一篇中介绍了STM32的SPI通
  • 嵌入式学习笔记——IIC通信

    IIC通信 前言IIC概述通信特征物理拓扑结构IIC通信的流程IIC的特点 xff1a STM32的IIC通信GPIO模拟IICIIC的时序组成 xff08 主机对从机写入数据 xff09 1 起始信号2 器件地址与读写位3 从机应答信号5
  • 立创梁山派学习笔记——GPIO输出控制

    梁山派 前言开发板简介GD32F407ZGT6官方资源数据手册1 系统框图2 引脚复用表3 命名规则4 其他 用户手册固件库与PACK包 开发环境搭建立创官方的资料包资料齐活 xff0c 开发1 工程搭建2 使用寄存器点亮LEDGPIO数量
  • C51_day5:串口通信UART

    3 1 串口基本认知 串行接口简称串口 xff0c 也称串行通信接口或串行通讯接口 xff08 通常指COM接口 xff09 xff0c 是采用串行通信方式的扩展接口 串行接口 xff08 Serial Interface xff09 是指
  • 哈希表/哈希冲突及解决方法(较全)

    哈希表的概念请参阅他人文章 xff0c 关于哈希冲突的解决这篇文章基本都整理到了 xff0c 还有几个常见的面试题 解决hash冲突的几种方法 前导 xff08 题外话 xff09 xff1a 一 开放定址法 xff08 闭散列 xff09
  • 关于构造函数,拷贝构造函数,析构函数的调用顺序(1)

    导言 对象是由 底层向上 开始构造的 xff0c 当建立一个对象时 xff0c 首先调用基类的构造函数 xff0c 然后调用下一个派生类的构造函数 xff0c 依次类推 xff0c 直至到达派生类次数最多的派生次数最多的类的构造函数为止 因
  • vector的内存释放

    xff11 vector内存分配机制 C 43 43 中vector的一个特点是 xff1a 内存空间只会增长 xff0c 不会减小 即为了支持快速的随机访问 xff0c vector容器的元素以连续方式存放 xff0c 每一个元素都挨着前
  • MFC多人在线聊天室

    我已经在我的资源里上传了这个聊天室的代码了 基于MFC的C 43 43 的select模型的TCP聊天室 采用select网络模型 xff0c 支持多人同时登陆 xff0c 功能有上线 下线 群聊 私聊 使用CjsonObject进行数据传
  • linux---进程间通信(ipc)之共享内存

    前面我们讲解了进程间通信之管道 xff0c 这段我们讲解我们的共享内存 共享内存是所有进程间通信方式最快的一种 内存共享模型就像下面的图一样 xff0c 就是将物理内存映射到我们进程的虚拟地址上 xff0c 我们就可以直接操作我们虚拟地址空
  • Effective C++总结

    explicit关键字 C 43 43 中的explicit关键字只能用于修饰只有一个参数或者是其他参数有默认值的类构造函数 它的作用是表明该构造函数是显式的 而非隐式的 跟它相对应的另一个关键字是implicit 意思是隐藏的 类构造函数
  • 计算机网络(5)TCP之重传机制

    重传机制 超时重传数据包丢失确认应答丢失 快速重传SACKD SACK例一 ACK 丢包例2 xff1a 网络延时 TCP 是通过序列号 确认应答 重发控制 连接管理以及窗口控制等机制实现可靠性传输的 TCP 实现可靠传输的方式之一 xff