计算机网络——网络字节序(大端字节序(Big Endian)\小端字节序(Little Endian))

2023-05-16

网络字节序

  • 网络字节序
    • 1、网络字节序 (Network Byte Order)和本机转换
    • 2、字节序转换函数

网络字节序

1、网络字节序 (Network Byte Order)和本机转换

1、大端、小端字节序
“大端”和”小端”表示多字节值的哪一端存储在该值的起始地址处;小端存储在起始地址处,即是小端字节序;大端存储在起始地址处,即是大端字节序;具体的说:

  • ①大端字节序(Big Endian):最高有效位存于最低内存地址处,最低有效位存于最高内存处;
  • ②小端字节序(Little Endian):最高有效位存于最高内存地址,最低有效位存于最低内存处。

如下图:当以不同的存储方式,存储数据为0x12345678时:
在这里插入图片描述
网络字节序:大端字节序
网络上传输的数据都是字节流,对于一个多字节数值,在进行网络传输的时候,先传递哪个字节?也就是说,当接收端收到第一个字节的时候,它将这个字节作为高位字节还是低位字节处理,是一个比较有意义的问题:

UDP/TCP/IP协议规定:把接收到的第一个字节当作高位字节看待,这就要求发送端发送的第一个字节是高位字节;而在发送端发送数据时,发送的第一个字节是该数值在内存中的起始地址处对应的那个字节,也就是说,该数值在内存中的起始地址处对应的那个字节就是要发送的第一个高位字节

所以:网络字节序就是大端字节序, 有些系统的本机字节序是小端字节序, 有些则是大端字节序, 为了保证传送顺序的一致性, 所以网际协议使用大端字节序来传送数据

如何证明自己的机器采用了哪种字节顺序:

/* 确定你的电脑是大端字节序还是小端字节序 */
#include <stdio.h>

int check1()
{
	int i = 1; //1在内存中的表示: 0x00000001
	char *pi = (char *)&i; //将int型的地址强制转换为char型
	return *pi == 0; //如果读取到的第一个字节为1,则为小端法,为0,则为大端法
}

int main()
{
	if (check1() == 1)
		printf("big\n");
	else
		printf("little\n");

	return 0;
}

第二种方法,我们用联合结构解决,其本质差异不大
/* 确定你的电脑是大端字节序还是小端字节序 */
#include <stdio.h>

int check2()
{
	union test {
		char ch;
		int i;
	}test0;
	test0.i = 1;
	return test0.ch == 0;
}
int main()
{
	if (check1() == 1)
		printf("big\n");
	else
		printf("little\n");

	return 0;
}

因为联合结构中的变量共用一块存储空间,所以ch和i拥有同一个地址:
在这里插入图片描述

对本例中的联合结构,我们对它求sizeof(test0),会发现它的大小为4,取了int 的大小。

关于union,我们说了,它里边的变量共用一块存储空间,但是它的大小并不总是其中最大的变量所占的空间,还需要考虑对齐!

比如:

union test1 {

char[5];

int i;

}

它的大小就是 8 了!

2、字节序转换函数

字节序转换函数

 #include <arpa/inet.h>

//将主机字节序转换为网络字节序
 unit32_t htonl (unit32_t hostlong);
 unit16_t htons (unit16_t hostshort);
 //将网络字节序转换为主机字节序
 unit32_t ntohl (unit32_t netlong);
 unit16_t ntohs (unit16_t netshort);

 说明:h -----host;n----network ;s------short;l----longhtons()--"Host to Network Short"
htonl()--"Host to Network Long"
ntohs()--"Network to Host Short"
ntohl()--"Network to Host Long"

为什么在数据结构 struct sockaddr_in 中, sin_addr 和 sin_port 需要转换为网络字节顺序,而sin_family 需不需要呢?

答案是: sin_addrsin_port 分别封装在包的 IPUDP 层。因此,它们必须要 是网络字节顺序。但是 sin_family 域只是被内核 (kernel) 使用来决定在数 据结构中包含什么类型的地址,所以它必须是本机字节顺序。同时, sin_family 没有发送到网络上,它们可以是本机字节顺序。

IP 地址如何处理:地址转换函数

IP地址的三种表示格式及在开发中的应用

  • 1)点分十进制表示格式

  • 2)网络字节序格式

  • 3)主机字节序格式

用IP地址127.0.0.1为例:

   第一步   127   .     0     .     0      .    1   把IP地址每一部分转换为8位的二进制数。

  第二步 01111111     00000000     00000000     00000001      =   2130706433   (主机字节序)

  然后把上面的四部分二进制数从右往左按部分重新排列,那就变为:

  第三步 00000001     00000000     00000000    01111111        =   16777343        (网络字节序)

1、函数inet_addr(),将IP地址从 点数格式转换成无符号长整型。使用方法如下:

函数原型

in_addr_t inet_addr(const char *cp);

转换网络主机地址(点分十进制)为网络字节序二进制值,

  • cp代表点分十进制的IP地址,如1.2.3.4
  • 如果参数 char *cp 无效则返回-1(INADDR_NONE),
  • 但这个函数有个缺点:在处理地址为255.255.255.255时也返回-1,虽然它是一个有效地址,但inet_addr()无法处理这个地址。

使用

ina.sin_addr.s_addr = inet_addr("132.241.5.10");

现在你可以将IP地址转换成长整型了。有没有其相反的方法呢? 它可以将一个in_addr结构体输出成点数格式?

2、你就要用到函数 inet_ntoa()(“ntoa"的含义是"network to ascii”),就像这样:
函数原型

char* inet_ntoa(struct in_addr in);

参数:

  • in代码in_addr的结构体,其结构体如下:
struct in_addr 
{
    union 
    {
        struct { UCHAR s_b1,s_b2,s_b3,s_b4; } S_un_b;
        struct { USHORT s_w1,s_w2; } S_un_w;
        ULONG S_addr;
    } S_un;
};

使用

SOCKADDR_IN sock;
sock.sin_family = AF_INET;
//将字符串转换为in_addr类型
sock.sin_addr.S_un.S_addr =  inet_addr("192.168.1.111");
sock.sin_port = htons(5000);
 
//将in_addr类型转换为字符串
printf("inet_ntoa ip = %s\n",inet_ntoa(sock.sin_addr));


结果输出:
inet_ntoa ip = 192.168.1.111

注意:
inet_ntoa()将结构体in_addr作为一个参数,不是长整形。同样需要注意的是它返回的是一个指向一个字符的 指针。它是一个由inet_ntoa()控制的静态的固定的指针,所以每次调用 inet_ntoa(),它就将覆盖上次调用时所得的IP地址。例如:

char *a1, *a2;

……

a1 = inet_ntoa(ina1.sin_addr); /* 这是198.92.129.1 */

a2 = inet_ntoa(ina2.sin_addr); /* 这是132.241.5.10 */

printf("address 1: %s\n",a1);

printf("address 2: %s\n",a2);

输出如下:

address 1: 132.241.5.10

address 2: 132.241.5.10
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

计算机网络——网络字节序(大端字节序(Big Endian)\小端字节序(Little Endian)) 的相关文章

  • 解决ROS中运行gazebo出现process has died的情况

    项目场景 xff1a gazebo 1 process has died pid 397 exit code 255 cmd opt ros melodic lib gazebo ros gzserver e ode worlds empt
  • 使用Ventoy制作U盘启动项

    最近在安装linux镜像的时候遇到了使用UltraISO软件制作U盘启动盘无法使用的情况 下面介绍另外一个软件把U盘制作成启动盘Ventoy xff1a 下载地址 xff1a Ventoy 使用方法 xff1a 1 下载好Ventoy xf
  • git 快速入手

    目录 一 xff1a 初次使用git及github 二 xff1a 将github上下载的代码上传到自己的github仓库里 三 xff1a 使用HTTP上传自己写的项目至github git常用指令汇总 使用需求 xff1a 初次接触gi
  • 线程、进程、并发、cpu、gpu的联系

    1 线程和进程的区别 进程 xff1a 一个在内存中运行的应用程序 每个进程都有自己独立的一块内存空间 xff0c 一个进程可以有多个线程 比如在Windows系统中 xff0c 一个运行的xx exe就是一个进程 线程 xff1a 进程中
  • ubuntu系统安装cuda、cudnn、pytorch和libtorch

    1 安装cuda和cudnn 本机安装的cuda版本11 0 2 cudnn版本 v8 0 5 cu11 0 Ubuntu20 04下CUDA cuDNN的详细安装与配置过程 xff08 图文 xff09 ubuntu20 04安装cuda
  • 深度学习语法篇

    一 基本常识 图像的分辨率的通道数 分辨率和通道数是两个不同的概念 分辨率指的是图像的像素数量 xff0c 它反映了图像的清晰度和细节程度 例如 xff0c 一个分辨率为64x64的图像意味着它有64个像素行和64个像素列 xff0c 总共
  • 第二讲:线性表示及坐标

    第二讲 xff1a 线性表示及坐标 一 线性表示 1 线性表示定义 xff1a 设 是线性空间V中的向量 xff0c 若存在V中一组向量 1 xff0c 2 xff0c xff0c n xff0c 及一组数x1 xff0c x2 xff0c
  • 快速理解掌握指针

    p gt next 61 q 像这种语句 xff0c 表示改变了p后面的连接关系 p 61 q gt next 这类语句 xff0c 没改变连接关系 xff0c 只是赋值而已 解读代码中指针所代表的节点之间的前后连接关系 只要输出该指针对应
  • 第三讲:子空间

    第三讲 xff1a 子空间 一 子空间定义 1 子空间 xff1a 设V是数域F上的线性空间 xff0c W是V的子集 xff0c 若对W中的任意元素 xff0c 及数K F xff0c 按V中的加法和数乘有 xff1a 1 xff09 4
  • Qt多线程之线程之间的传递数据

    hpp span class token macro property span class token directive keyword ifndef span MAINWINDOW H span span class token ma
  • 循环队列c代码实现

    循环队列的抽象数据类型 ADT 队列 xff08 Queue xff09 Data 同线性表 元素具有相同的类型 xff0c 相邻元素具有前驱和后继的关系 Operator span class token function InitQue
  • CMake(四):变量

    前面展示了如何定义基本目标和生成构建输出 就其本身而言 xff0c 这已经很有用了 xff0c 但CMake还附带了一大堆其他特性 xff0c 这些特性带来了极大的灵活性和便利性 本章涵盖了CMake最基本的部分之一 xff0c 即变量的使
  • CMake(六):使用子目录

    对于简单的项目 xff0c 将所有内容保存在一个目录中是可以的 xff0c 但是大多数实际项目倾向于将它们的文件分割到多个目录中 通常可以找到不同的文件类型或分组在各自的目录下的独立模块 xff0c 或者将属于逻辑功能组的文件放在项目目录层
  • CMake(九):生成器表达式

    当运行CMake时 xff0c 开发人员倾向于认为它是一个简单的步骤 xff0c 需要读取项目的CMakeLists txt文件 xff0c 并生成相关的特定于生成器的项目文件集 例如Visual Studio解决方案和项目文件 xff0c
  • CNNs系列---AlexNet网络介绍

    CNNs系列 AlexNet介绍 导言AlexNet介绍1 网络结构 1 参数量 计算量和输出尺寸计算公式 2 网络参数解析 2 AlexNet中涉及到的知识点 1 基本概念 2 AlexNet网络结构的贡献 导言 我们将开启关于卷积神经网
  • CNNS:基于AlexNet的分类任务

    CNNS 基于AlexNet的分类任务 数据集介绍1 pokeman数据集介绍2 flower数据集介绍 超参数对模型的影响1 激活函数对模型的影响 1 使用 96 Sigmoid 96 进行训练 2 使用 96 tanh 96 进行训练
  • CNNs: AlexNet补充

    CNNs AlexNet的补充 导言对 96 AlexNet 96 模型进行调整模型不同层的表征其他探索总结 导言 上上篇和上一篇我们详细地讲述了AlexNet的网络结构和不同超参数对同一数据集的不同实验现象 本节 xff0c 我们就Ale
  • 解决“Permission denied, please try again.”的问题

    在Ubuntu的终端输入命令 ssh highlight highlight是本地主机名称提示输入用户密码 当密码输入正确时 xff0c 仍返回错误 xff1a Permission denied please try again 解决的办
  • leetcode学习常用网站

    C 43 43 网站 cplusplus com map find C 43 43 Reference github com leopeng1995 acplusplus Morris Traversal方法遍历二叉树 xff08 非递归
  • arctan对照表

    注 xff1a 实际调用的是C 43 43 的atan2接口 arctan y x resultstd cout lt lt atan2 0 1 lt lt std endl 0std cout lt lt atan2 0 707 0 70

随机推荐