Pytorch:全连接神经网络-MLP回归

2023-05-16

Pytorch: 全连接神经网络-解决 Boston 房价回归问题

Copyright: Jingmin Wei, Pattern Recognition and Intelligent System, School of Artificial and Intelligence, Huazhong University of Science and Technology

Pytorch教程专栏链接


文章目录

      • Pytorch: 全连接神经网络-解决 Boston 房价回归问题
        • MLP 回归模型
          • 房价数据准备
          • 搭建网络预测房价


MLP 回归模型

使用sklearn库的fetch_california_housing()函数。数据集共包含20640个样本,有8个自变量。

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.datasets import fetch_california_housing

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD
import torch.utils.data as Data
import matplotlib.pyplot as plt
import seaborn as sns
房价数据准备
# 导入数据
housedata = fetch_california_housing()
# 切分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(housedata.data, housedata.target,
                                                    test_size = 0.3, random_state = 42)

70% 训练集,30%测试集。

X_train, X_test, y_train, y_test
(array([[   4.1312    ,   35.        ,    5.88235294, ...,    2.98529412,
           33.93      , -118.02      ],
        [   2.8631    ,   20.        ,    4.40120968, ...,    2.0141129 ,
           32.79      , -117.09      ],
        [   4.2026    ,   24.        ,    5.61754386, ...,    2.56491228,
           34.59      , -120.14      ],
        ...,
        [   2.9344    ,   36.        ,    3.98671727, ...,    3.33206831,
           34.03      , -118.38      ],
        [   5.7192    ,   15.        ,    6.39534884, ...,    3.17889088,
           37.58      , -121.96      ],
        [   2.5755    ,   52.        ,    3.40257649, ...,    2.10869565,
           37.77      , -122.42      ]]),
 array([[   1.6812    ,   25.        ,    4.19220056, ...,    3.87743733,
           36.06      , -119.01      ],
        [   2.5313    ,   30.        ,    5.03938356, ...,    2.67979452,
           35.14      , -119.46      ],
        [   3.4801    ,   52.        ,    3.97715472, ...,    1.36033229,
           37.8       , -122.44      ],
        ...,
        [   3.512     ,   16.        ,    3.76228733, ...,    2.36956522,
           33.67      , -117.91      ],
        [   3.65      ,   10.        ,    5.50209205, ...,    3.54751943,
           37.82      , -121.28      ],
        [   3.052     ,   17.        ,    3.35578145, ...,    2.61499365,
           34.15      , -118.24      ]]),
 array([1.938, 1.697, 2.598, ..., 2.221, 2.835, 3.25 ]),
 array([0.477  , 0.458  , 5.00001, ..., 2.184  , 1.194  , 2.098  ]))
# 数据标准化处理
scale = StandardScaler()
X_train_s = scale.fit_transform(X_train)
X_test_s = scale.transform(X_test)
# 将训练数据转为数据表
housedatadf = pd.DataFrame(data=X_train_s, columns = housedata.feature_names)
housedatadf['target'] = y_train
housedatadf
MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitudetarget
00.1335060.5093570.181060-0.273850-0.184117-0.010825-0.8056820.7809341.93800
1-0.532218-0.679873-0.422630-0.047868-0.376191-0.089316-1.3394731.2452701.69700
20.170990-0.3627450.073128-0.242600-0.611240-0.044800-0.496645-0.2775522.59800
3-0.402916-1.1555650.175848-0.008560-0.987495-0.0752301.690024-0.7069381.36100
4-0.2992851.857152-0.259598-0.0709930.086015-0.0663570.992350-1.4309025.00001
..............................
144431.3088270.5093570.281603-0.383849-0.675265-0.007030-0.8759180.8108912.29200
14444-0.4341000.3507930.5830370.3831540.2851050.063443-0.7635411.0755130.97800
14445-0.4947870.588640-0.591570-0.0409780.2877360.017201-0.7588580.6011912.22100
144460.967171-1.0762830.390149-0.0671640.3061540.0048210.903385-1.1862522.83500
14447-0.6832021.857152-0.829656-0.0877291.044630-0.0816720.992350-1.4159233.25000

14448 rows × 9 columns

使用相关系数热力图分析数据集中9个变量的相关性

datacor = np.corrcoef(housedatadf.values, rowvar=0)
datacor = pd.DataFrame(data = datacor, columns = housedatadf.columns,
                       index = housedatadf.columns)
plt.figure(figsize=(8, 6))
ax = sns.heatmap(datacor, square = True, annot = True, fmt = '.3f',
                 linewidths = .5, cmap = 'YlGnBu',
                 cbar_kws = {'fraction': 0.046, 'pad': 0.03})
plt.show()

在这里插入图片描述

从图像可以看出,和目标函数相关性最大的是MedInc(收入中位数)变量。而且AveRooms和AveBedrms两个变量的正相关性较强。

# 将数据集转为张量
X_train_t = torch.from_numpy(X_train_s.astype(np.float32))
y_train_t = torch.from_numpy(y_train.astype(np.float32))
X_test_t = torch.from_numpy(X_test_s.astype(np.float32))
y_test_t = torch.from_numpy(y_test.astype(np.float32))
# 将训练数据处理为数据加载器
train_data = Data.TensorDataset(X_train_t, y_train_t)
test_data = Data.TensorDataset(X_test_t, y_test_t)
train_loader = Data.DataLoader(dataset = train_data, batch_size = 64, 
                               shuffle = True, num_workers = 1)
搭建网络预测房价
# 搭建全连接神经网络回归
class MLPregression(nn.Module):
    def __init__(self):
        super(MLPregression, self).__init__()
        # 第一个隐含层
        self.hidden1 = nn.Linear(in_features=8, out_features=100, bias=True)
        # 第二个隐含层
        self.hidden2 = nn.Linear(100, 100)
        # 第三个隐含层
        self.hidden3 = nn.Linear(100, 50)
        # 回归预测层
        self.predict = nn.Linear(50, 1)
        
    # 定义网络前向传播路径
    def forward(self, x):
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = F.relu(self.hidden3(x))
        output = self.predict(x)
        # 输出一个一维向量
        return output[:, 0]
# 输出网络结构
from torchsummary import summary
testnet = MLPregression()
summary(testnet, input_size=(1, 8)) # 表示1个样本,每个样本有8个特征
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1               [-1, 1, 100]             900
            Linear-2               [-1, 1, 100]          10,100
            Linear-3                [-1, 1, 50]           5,050
            Linear-4                 [-1, 1, 1]              51
================================================================
Total params: 16,101
Trainable params: 16,101
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.06
Estimated Total Size (MB): 0.06
----------------------------------------------------------------
# 输出网络结构
from torchviz import make_dot
testnet = MLPregression()
x = torch.randn(1, 8).requires_grad_(True)
y = testnet(x)
myMLP_vis = make_dot(y, params=dict(list(testnet.named_parameters()) + [('x', x)]))
myMLP_vis

在这里插入图片描述

然后使用训练集对网络进行训练

# 定义优化器
optimizer = torch.optim.SGD(testnet.parameters(), lr = 0.01)
loss_func = nn.MSELoss() # 均方根误差损失函数
train_loss_all = []

# 对模型迭代训练,总共epoch轮
for epoch in range(30):
    train_loss = 0
    train_num = 0
    # 对训练数据的加载器进行迭代计算
    for step, (b_x, b_y) in enumerate(train_loader):
        output = testnet(b_x) # MLP在训练batch上的输出
        loss = loss_func(output, b_y) # 均方根损失函数
        optimizer.zero_grad() # 每次迭代梯度初始化0
        loss.backward() # 反向传播,计算梯度
        optimizer.step() # 使用梯度进行优化
        train_loss += loss.item() * b_x.size(0)
        train_num += b_x.size(0)
    train_loss_all.append(train_loss / train_num)
# 可视化损失函数的变换情况
plt.figure(figsize = (8, 6))
plt.plot(train_loss_all, 'ro-', label = 'Train loss')
plt.legend()
plt.grid()
plt.xlabel('epoch')
plt.ylabel('Loss')
plt.show()

在这里插入图片描述

对网络预测,并使用平均绝对值误差来表示预测效果

y_pre = testnet(X_test_t)
y_pre = y_pre.data.numpy()
mae = mean_absolute_error(y_test, y_pre)
print('在测试集上的绝对值误差为:', mae)
在测试集上的绝对值误差为: 0.39334159455403034

真实集和预测值可视化,查看之间的差异

index = np.argsort(y_test)
plt.figure(figsize=(8, 6))
plt.plot(np.arange(len(y_test)), y_test[index], 'r', label = 'Original Y')
plt.scatter(np.arange(len(y_pre)), y_pre[index], s = 3, c = 'b', label = 'Prediction')
plt.legend(loc = 'upper left')
plt.grid()
plt.xlabel('Index')
plt.ylabel('Y')
plt.show()

在这里插入图片描述

在测试集上,MLP回归正确地预测处理原始数据的变化趋势,但部分样本的预测差异较大。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Pytorch:全连接神经网络-MLP回归 的相关文章

  • 9.KMP算法

    KMP算法 1 KMP算法解决的问题 字符串str1和str2 xff0c str1是否包含str2 xff0c 如果包含返回str2在str1中开始的位置 xff0c 如果不包含返回 1 如果做到时间复杂度O N 完成 xff1f 测试用
  • 10.Manacher算法(用于解决回文子串问题)

    Manacher算法 1 Manacher算法解决的问题 字符串str中 xff0c 最长回文子串的长度如何求解 xff1f 如何做到时间复杂度O N 完成 xff1f 回文序列是从左往右和从右往左看一样 xff0c 如abba xff0c
  • git push代码到远程仓库,报错解决:fatal: unable to access ‘https://github.com/.......‘: OpenSSL SSL_read: Connec

    报错如下 xff1a 产生原因 xff1a 一般是这是因为服务器的SSL证书没有经过第三方机构的签署 xff0c 所以才报错解除ssl验证后 xff0c 再次git即可 解决办法输入此条git命令 xff1a git config glob
  • 11.滑动窗口的最大值——重要结构双端队列

    滑动窗口最大 xff08 小 xff09 值 1 滑动窗口最大值结构 窗口概念 xff1a 一开始窗口左边界L 有边界R都停留在数组左侧 xff0c 窗口L和R都只能往数组右边移动 xff0c 并且左边界L永远不能超过有边界R 任何时刻都能
  • 12.单调栈——解决接雨水和柱状图中的最大矩形等问题

    单调栈 1 单调栈实现结构 单调栈解决的问题 xff1a 给你一个数组 想要用尽可能低的代价知道数组中每一个元素的左边元素比它大的或者右边元素比他大的信息是什么 如果用暴力方法 xff0c 左边遍历一次右边遍历一次 xff0c 时间复杂度为
  • 12.快速排序

    1荷兰国旗问题 问题1 xff1a 给定一个数组arr和一个数num xff0c 将小于等于num的数放在数组的左边大于num的数放在数组的右边 xff08 不要求有序 xff09 要求额外空间复杂度为O 1 时间复杂度为O N 遍历数组元
  • 死锁预防、死锁避免、死锁检测

    死锁 1 死锁的概念 1 1死锁的定义 多个进程并发执行 xff0c 由于竞争资源而造成的一种僵局 xff08 互相等待 xff09 xff0c 若无外力作用 xff0c 这些进程都将无法推进 xff0c 这就是死锁现象 例如 xff1a
  • 内存分配方式

    内存分配方式 1 基本概念 内存管理的基本概念 虽然计算机硬件发展 xff0c 内存容量在不断变大 xff0c 但是也不可能将所有用户进程和系统所需要的程序和数据放入内存中 xff0c 因此操作系统必须要对内存空间进行合理划分和有效动态分配
  • 虚拟内存和LRU页面置换算法

    虚拟内存 1 虚拟内存的基本概念 传统存储管理方式的特征 传统的内存管理策略都是为了同时将多个进程保存进内存中 xff0c 它们具有以下的共同特征 xff1a 一次性 作业必须一次性全部装入内存后 xff0c 才能开始运行 xff08 静态
  • 0.0C++和C的区别

    C 43 43 和C的区别 C 43 43 如今是一个同时支持面向过程 面向对象 函数形式 泛型形式 元编程形式的语言 我们该如何理解C 43 43 这门语言呢 xff1f Effective C 43 43 书中给出了一个简单的方法 xf
  • 15.9为什么要将成员变量设置为private

    为什么要将成员变量声明为private 为什么要将成员变量封装为private xff0c 主要有以下四个原因 xff1a 好处1 xff1a 如果成员变量不是public xff0c 那么客户唯一能访问成员变量的唯一方式就是通过成员函数
  • 2.7.C++中static关键字的5种基本用法

    static关键字 static关键字主要应用于以下几种情况 xff1a 情况1 xff1a static静态函数 定义静态函数 xff1a 在函数返回类型前加上static关键字 xff0c 函数即被定义为静态函数 静态函数只能在本源文件
  • 进程调度算法

    进程调度 在多道程序系统中 xff0c 进程数量往往多于处理机的个数 xff0c 因此进程竞争使用处理机的情况在所难免 处理机调度是对处理机进行分配 xff0c 即从就绪队列中按照一定的算法选择一个进程并将处理机分配给它运行 xff0c 以
  • git clone 出现fatal: unable to access ‘https://github 类错误解决方法

    git clone 遇到问题 xff1a fatal unable to access https github comxxxxxxxxxxx Failed to connect to xxxxxxxxxxxxx 问题 将命令行里的http
  • 进程通信的方式

    进程通信 1 进程通信的概念 进程是一个独立的资源分配单元 xff0c 不同进程 xff08 主要是指不同的用户进程 xff09 之间的资源是独立的 xff0c 没有关联的 xff0c 不能在一个进程中直接访问另一个进程的资源 但是 xff
  • 网络通信的过程

    网络通信的过程 封装 上层协议时如何使用下层协议提供的服务的呢 xff1f 其实这是通过封装实现的 应用程序是在发送到物理网络上之前 xff0c 将沿着协议栈从上往下依次传递 每层协议都将在上层数据的基础上加上自己的头部信息 xff08 有
  • TCP三次握手、四次挥手

    TCP通信流程 TCP和UDP TCP和UDP区别如下 xff1a UDP xff1a 用户数据报文协议 xff0c 面向无连接 xff0c 可以单播 xff0c 多播 xff0c 广播 xff0c 面向数据报 xff0c 不可靠 TCP
  • Qt的多线程编程

    Qt线程 基本概念 并发 当有多个线程在操作时 xff0c 如果系统只有一个CPU xff0c 则它根本不可能真正同时进行一个以上的线程 xff0c 它只能把CPU运行时间划分成若干个时间段 xff0c 再将时间段分配给各个线程执行 xff
  • CMake编译C++文件

    这篇文章介绍如何使用cmake工具编译一个最简单的helloworld cpp文件 首先创建一个空的文件夹 mkdir cmake test 在该文件夹下 xff0c 我们新建一个helloworld cpp文件 span class to
  • 智能小车建图导航-在rviz中导航(运行)

    笔记来源 xff1a 机器人开发与实践 xff08 古月 xff09 或者直接运行这个脚本文件 xff1a xff08 如果你没有在 bracsh文件中加入source xff0c 建议加入或者在脚本文件的上面中添加source xff0c

随机推荐

  • 004-S500无人机-相关的器件参数以及计算

    这篇博客主要是记录S500无人机的相关器件的参数 xff0c 参数的来源来源于holybro官网 xff1a https shop holybro com 我这里进行参数的归纳以及计算 一 电机 xff08 2216 880kv xff09
  • TX2 学习记录(开启板载/USB摄像头)

    刚拿到手一个TX2 xff0c 简单地学习一下这块板子 xff0c 因为是学长留下来的板子 xff0c 所以刷机的步骤我就省略了 xff0c 各位小伙伴可以参考其他大佬的博客进行刷机 xff0c 再来就记录一下一些操作指令吧 打开USB摄像
  • ubuntu16.04中进行ROS通信编程

    ROS通信学习 基础知识学习字段ROS通信小例子一 创建一个工作区二 创建一个ROS工程包三 创建通信的发 收节点四 测试程序的正确性 图像ROS通信小例子视频ROS通信小例子多机ROS通信 基础知识学习 x1f31f 话题与服务的区别 话
  • 2021电赛F题智能送药小车方案分析(openMV数字识别,红线循迹,STM32HAL库freeRTOS,串级PID快速学习,小车自动返回)

    2021全国大学生电子设计竞赛F题智能送药小车 前提 xff1a 本篇文章重在分享自己的心得与感悟 xff0c 我们把最重要的部分 xff0c 摄像头循迹 xff0c 摄像头数字识别问题都解决了 xff0c 有两种方案一种是openARTm
  • CARLA常见错误解决方案以及常见的问题解决方案

    记录Linux环境 Windows环境下常见的运行自动驾驶仿真器CARLA出现的错误 问题1 问题1比较基础 xff0c 创建虚拟环境以及删除虚拟环境 conda create span class token operator span
  • cmd找不到conda以及通过cmd启用Anaconda中的Python环境(base)

    问题 xff1a 在cmd中输入python无法进入或启用python ipython conda jupyter notebook 一 解决方法 xff1a 在系统环境中添加Anaconda路径 lt 1 gt 1 打开高级系统设置 xf
  • c语言实现strcat函数

    char strcat char strDestination const char strSource 一 函数介绍 作用 xff1a 连接字符串的函数 xff0c 函数返回指针 xff0c 两个参数都是指针 xff0c 第一个参数所指向
  • C/C++的static关键字作用(转载)

    一 限制符号的作用域只在本程序文件 若变量或函数 xff08 统称符号 xff09 使用static修饰 xff0c 则只能在本程序文件内使用 xff0c 其他程序文件不能调用 xff08 非static的可以通过extern 关键字声明该
  • crc校验

    参考链接 xff1a https www cnblogs com esestt archive 2007 08 09 848856 html 一 CRC校验原理 1 CRC校验全称为循环冗余校验 xff08 Cyclic Redundanc
  • ubuntu安装eclipse教程

    在安装eclipse之前 xff0c 要先安装JDK xff0c 一 安装JDK 1 从官网上下载JDK 链接 xff1a https www oracle com java technologies downloads 选择的jdk文件一
  • UDP通信入门篇

    UDP通信属于网络通信中的一种方式 xff0c 需要用套接字来进行通信 初接触UDP通信时 xff0c 不知道需要链接静态库 pragma comment lib ws2 32 lib xff0c 导致自己在前期浪费了很多时间去排查问题 除
  • window11配置深度学习环境

    Anaconda 43 PyCharm 43 CUDA 43 CUDNN 43 PyTorch 1 Anaconda安装 下载路径 xff1a https www anaconda com 安装方式 xff1a 以管理员身份安装 中间选项
  • python配置opencv环境后,读取图片,报错:can‘t open/read file: check file path/integrity

    运行出错代码 xff1a import cv2 import numpy as np image 61 cv2 imread 39 C Pictures 桌面背景图片切换 wallhaven 6oq1k7 jpg 39 cv2 IMREAD
  • 断言

    代码中放置一些假设 xff0c 通过判断假设是否为真 xff0c 进而判断程序是否正确 断言就是用来测试程序中的假设是否正确的 xff0c 若果假设被违反 xff0c 那么就中断程序的执行 断言assert是定义在assert h中的 宏
  • STM32输出SPWM波,HAL库,cubeMX配置,滤波后输出1KHz正弦波

    SPWM波 对于功率方向 输出SPWM波是必须要掌握的 工程 stm32生成spwm代码Keil工程链接资源 引用spwm波定义 PWM波形就是指占空比可变的波形 SPWM波形是指脉冲宽度按正弦规律变化且和正弦波等效的PWM波形 两者的区别
  • C语言链表写法,练习链表

    C语言链表写法 xff0c 练习链表 建立要一个文件 xff1a LinkList h 内容 xff1a span class token macro property span class token directive keyword
  • 树莓派摄像头 C++ OpenCV YoloV3 实现实时目标检测

    树莓派摄像头 C 43 43 OpenCV YoloV3 实现实时目标检测 本文将实现树莓派摄像头 C 43 43 OpenCV YoloV3 实现实时目标检测 xff0c 我们会先实现树莓派对视频文件的逐帧检测来验证算法流程 xff0c
  • RTK定位原理

    一 卫星测距原理说明 天上的卫星发送数据被便携式RTK终端接收到 xff0c 卫星和终端之间的距离D 61 C T C为光速 xff0c T为卫星发送的信号到达便携式RTK终端的时间 xff0c 通过时间乘以距离可以获得卫星和便携式终端的实
  • 网络协议与网络编程(单电脑信息传输)

    C C 43 43 网络编程 单电脑信息传输 Copyright Jingmin Wei Pattern Recognition and Intelligent System School of Artificial and Intelli
  • Pytorch:全连接神经网络-MLP回归

    Pytorch 全连接神经网络 解决 Boston 房价回归问题 Copyright Jingmin Wei Pattern Recognition and Intelligent System School of Artificial a