TCP三步握手,以及相关问题

2023-05-16

三次握手是 TCP 连接的建立过程。在握手之前,主动打开连接的客户端结束 CLOSE 阶段

,被动打开的服务器也结束 CLOSE 阶段,并进入 LISTEN 阶段。随后进入三次握手阶段:

① 首先客户端向服务器发送一个 SYN 包,并等待服务器确认,其中:

  • 标志位为 SYN,表示请求建立连接;
  • 序号为 Seq = x(x 一般取随机数);
  • 随后客户端进入 SYN-SENT 阶段。

② 服务器接收到客户端发来的 SYN 包后,对该包进行确认后结束 LISTEN 阶段,并返回一段 TCP 报文,其中:

  • 标志位为 SYN 和 ACK,表示确认客户端的报文 Seq 序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接;
  • 序号为 Seq = y;
  • 确认号为 Ack = x + 1,表示收到客户端的序号 Seq 并将其值加 1 作为自己确认号 Ack 的值,随后服务器端进入 SYN-RECV同步接收 阶段。

③ 客户端接收到发送的 SYN + ACK 包后,明确了从客户端到服务器的数据传输是正常的,从而结束 SYN-SENT 同步发送阶段。并返回最后一段报文。其中:

  • 标志位为 ACK,表示确认收到服务器端同意连接的信号;
  • 序号为 Seq = x + 1,表示收到服务器端的确认号 Ack,并将其值作为自己的序号值;
  • 确认号为 Ack= y + 1,表示收到服务器端序号 seq,并将其值加 1 作为自己的确认号 Ack

 的值。

  • 随后客户端进入 ESTABLISHED已确立的。

当服务器端收到来自客户端确认收到服务器数据的报文后,得知从服务器到客户端的数据传输是正常的,从而结束 SYN-RECV 阶段,进入 ESTABLISHED 阶段,从而完成三次握手。

为什么是三次而不是四次:

标志位为 SYN 和 ACK可以同时同时为1

为什么是三次而不是两次:

 三次握手的主要目的是确认自己和对方的发送和接收都是正常的,从而保证了双方能够进行可靠通信。若采用两次握手,
当第二次握手后就建立连接的话,此时客户端知道服务器能够正常接收到自己发送的数据,
而服务器并不知道客户端是否能够收到自己发送的数据。

举两个例子,第一种是黑客会伪造大量SYN请求发送给服务器,服务器立即确认并建立连接,分配资源,但是这一系列连接并不是真实存在的,这大大浪费了服务器的资源并且阻塞了正常用户的连接,这种也叫SYN洪泛攻击。

第二种是服务器返回给客户端的ACK数据包可能会在传输的过程中丢失,而客户端没有收到该ACK数据包而拒绝接收服务器接下来发送的数据,于是服务器一直在发送,客户端一直在拒绝,形成死锁。

第 2 次握手传回了 ACK,为什么还要传回 SYN

ACK 是为了告诉客户端发来的数据已经接收无误,而传回 SYN 是为了把自己的初始序列号(Seq)同步给客户端。

TCP三次握手时的第一次的seq序号是怎样产生的?

 

第一次的序号是随机序号,但也不是完全随机,它是使用一个ISN算法得到的。

seq = C + H (源IP地址,目的IP地址,源端口,目的端口)。其中,C是一个计时器,每隔一段时间值就会变大,H是消息摘要算法,输入是一个四元组(源IP地址,目的IP地址,源端口,目的端口)。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

TCP三步握手,以及相关问题 的相关文章

  • 如何在java应用程序中检测FIN - tcp标志?

    我在两台计算机之间有持久的 TCP 连接 第二台计算机不受我的控制 第二台计算机可以随时发送FIN标志 并且首先必须关闭当前连接 将FIN标志发送回第二台计算机 我如何知道第二台计算机正在发送 FIN 标志 以及何时必须调用 Java 应用
  • 数据包丢失和数据包重复

    我试图找出数据包丢失和数据包重复问题之间的区别 有谁知道 数据包重复 是什么意思 和TCP检测到丢失时重传数据包一样吗 No In TCP 数据包 的传递是可靠的 我认为在这种情况下术语数据应该更好 因为它是面向流的协议 数据包丢失和重复是
  • 在 Python 中通过 TCP 套接字发送文件

    我已经成功地将文件内容 图像 复制到新文件 然而 当我通过 TCP 套接字尝试同样的事情时 我遇到了问题 服务器循环未退出 客户端循环在到达 EOF 时退出 但服务器无法识别 EOF 这是代码 Server import socket Im
  • 访问 AWS 上的 Tensorboard

    我正在尝试访问 AWS 上的 Tensorboard 这是我的设置 张量板 tensorboard host 0 0 0 0 logdir train 在端口 6006 上启动 TensorBoard b 39 您可以导航到http 172
  • 无法分配请求的地址 - 可能的原因?

    我有一个由主服务器和分布式从服务器组成的程序 从属服务器向服务器发送状态更新 如果服务器在固定时间内没有收到特定从属服务器的消息 则会将该从属服务器标记为关闭 这种情况一直在发生 通过检查日志 我发现从站只能向服务器发送一个状态更新 然后永
  • 分配 TCP/IP 端口供内部应用程序使用

    我编写了一个由 Windows 服务托管的 WCF 服务 它需要侦听已知的 TCP IP 端口 我可以在什么范围内安全地分配端口供我的组织内使用 该端口将嵌入到服务和使用该服务的客户端的配置文件中 端口 0 1023 是众所周知的端口 由
  • 触发“对等方重置连接”

    我想测试当发生 对等方重置连接 错误时我们的应用程序 嵌入式 ftp 服务器 中发生的日志记录 这个帖子 https stackoverflow com questions 1434451 connection reset by peer很
  • 为什么我收到的数据包数据大小大于mss?

    我在两台 PC 上使用 ifconfig ethX mtu 300 修改了 MTU 并使用 netperf 测试网络 我用 WireShark 嗅探了 SYN 数据包中的 MSS 260 但我得到了一些大于 260 的数据包 为什么 嗅探器
  • 谁在 Mac OS X 上监听给定的 TCP 端口?

    在Linux上 我可以使用netstat pntl grep PORT or fuser n tcp PORT找出哪个进程 PID 正在侦听指定的 TCP 端口 如何在 Mac OS X 上获得相同的信息 在 macOS 上Big Sur然
  • ADB TCPIP 连接问题

    我有两台 Galaxy S3 其中一个已扎根 另一个则未扎根 因此 当我尝试通过本地网络连接它们时 计算机可以看到已root的计算机 但是正常的就卡在tcpip这一步了 所以 我写 adb tcpip 5555 It says restar
  • 为什么SOCKS5需要通过UDP中继UDP?

    The SOCKS5 https en wikipedia org wiki SOCKS SOCKS5协议 描述为RFC1928 https www rfc editor org rfc rfc1928提供对 UDP 的支持 总而言之 希望
  • 了解 netty 通道缓冲区和水印

    我正在尝试了解网络缓冲区和水印 作为一个测试用例 我有一个 netty 服务器 它向客户端写入数据 客户端被阻止 基本上每次读取之间有 10 秒的睡眠时间 在正常 I O 下 如果接收方被阻塞 TCP 发送方将受到限制 由于流量控制 发送速
  • 使用 InputStream 通过 TCP 套接字接收多个图像

    每次我从相机捕获图像时 我试图将多个图像自动从我的 Android 手机一张一张地发送到服务器 PC 问题是read 函数仅在第一次时阻塞 因此 从技术上讲 只有一张图像被接收并完美显示 但在那之后当is read 回报 1 该功能不阻塞
  • 使用 TCP 时是否需要使用校验和来保护我的消息?

    使用 TCP 作为网络协议 在通过线路发送消息之前 我会为每条消息的大小 以及可能的校验和 添加前缀 我想知道 计算和传输消息的校验和是否有意义 以确保消息将被不变地传递 如果以及何时传递 例如因为一些网络错误 目前 我在发送消息本身之前发
  • TCP 连接寿命

    客户端 服务器 TCP 连接在野外可以持续多长时间 我希望它保持永久连接 但事情发生了 所以客户端将不得不重新连接 我什么时候可以说代码有问题而不是某些外部设备有问题 我同意赞 林克斯的观点 虽然无法保证 但假设不存在连接或带宽问题 您可以
  • StreamWriter的正确使用

    经过几次尝试后 我无法让 StreamWriter 正确构建 工作 所以我做了一些根本错误的事情 C Visual Studio 我有一个现有的 TCP 客户端 它连接并充当读取器 它工作正常 private System Net Sock
  • 具有非阻塞或多线程功能的 Ruby Tcp Server 类

    找不到任何可以帮助创建非阻塞 多线程服务器的 gem 或类 哪里可以找到 The Ruby 文档 http ruby doc org core classes Socket html M002091关于套接字有一些很好的例子 使用该页面中的
  • SO_REUSEPORT 可以在 Unix 域套接字上使用吗?

    Linux 内核 gt 3 9 允许通过设置在内核负载平衡的进程之间共享套接字SO REUSEPORT http lwn net Articles 542629 http lwn net Articles 542629 这如何用于类型的套接
  • 使用 TcpClient 通过 C# 通过 TCP 发送多个文件

    我正在尝试使用 C TcpClient 通过 TCP 发送多个文件 对于单个文件来说它效果很好 但是当我有多个文件时 它只发送第一个文件 这是我的代码 发送文件 try TcpClient tcpClient new TcpClient N
  • TCP 校验和可能无法检测到错误吗?如果是的话,这件事是如何处理的?

    如果 TCP 有效负载在传输过程中被损坏 则重新计算的校验和将与传输的校验和不匹配 太好了 到目前为止一切都很好 如果 TCP 校验和在传输过程中损坏 则重新计算的校验和将与现在损坏的校验和不匹配 太好了 到目前为止一切都很好 当有效负载和

随机推荐

  • ubuntu下realsence相机通过ros话题直接读取内参

    roslaunch realsense2 camera rs camera span class token punctuation span launch span class token comment 打开相机节点 span rost
  • 语义栅格地图(六) realsense实际测试

    1 在ros中启动realsense 测试输出话题 xff1a roslaunch realsense2 camera rs camera launch 测试输出点云 xff1a roslaunch realsense2 camera rs
  • VINS on RealSense D435i

    关于Realsense D435i运行VINS系列 前言 在SLAM中 xff0c 主要是以激光SLAM和视觉SLAM为主 xff0c 激光雷达直接可以获取三维点云坐标信息 xff0c 所以激光SLAM会比视觉SLAM稳定许多 xff0c
  • CAN 扩展帧和标准帧的适用范围

    刚接触CAN不久 xff0c 对很多CAN相关的知识不了解 xff0c 就难以进行灵活的运用 今天弄懂了CAN的标准帧和扩展帧的使用场合 xff0c 故此做一下笔记 首先 xff0c 得知道为什么会有这两种不同的帧 其实原因和IPV4和IP
  • ZCU104开发板:开发板组件描述

    1 Zynq UltraScale 43 XCUZU7EV MPSoC ZCU104板上安装了Zynq UltraScale 43 XCZU7EV 2FFVC1156 MPSoC xff0c 它在同一设备中集成了功能强大的处理系统 xff0
  • (超简单)Ubuntu/linux上搭建pytorch-gpu环境

    xff08 超简单 xff09 Ubuntu linux上搭建pytorch gpu环境 1 下载miniconda conda 1 下载miniconda conda conda和miniconda可选择在清华镜像源中下载 xff0c 这
  • GAN训练中遇到的mode collapse(模式崩塌)

    1 梯度 loss爆炸 xff08 NaN xff0c Inf xff09 这两天一直在训练自己的GAN模型 xff0c 训练过程中鉴别器极其不稳定 xff0c 训练的几个epoch之后经常出现NAN xff0c 在加入WGAN中的梯度惩罚
  • 如何训练GAN?能够让GAN work的方法和技巧

    如何训练GAN xff1f 能够让GAN work的方法和技巧 尽管在生成对抗网络 xff08 GAN xff09 中的研究继续改善了这些模型的基本稳定性 xff0c 但我们使用了许多技巧来训练它们并使它们日复一日地稳定 xff08 翻译自
  • batch size,学习率(learning rate),and training time

    batch size 学习率 xff08 learning rate xff09 and training time 1 batch size和leaning rate的关系 现在深度学习中的绝大多数算法采用梯度下降法来进行训练 xff0c
  • torch.optim.lr_scheduler:pytorch必须掌握的的4种学习率衰减策略

    梯度下降算法需要我们指定一个学习率作为权重更新步幅的控制因子 xff0c 常用的学习率有0 01 0 001以及0 0001等 xff0c 学习率越大则权重更新 一般来说 xff0c 我们希望在训练初期学习率大一些 xff0c 使得网络收敛
  • 虚拟内存与物理内存,自己理解,删除了一些细节,更容易懂

    其实虚拟内存就是字面意思 xff0c 虚拟保存在磁盘中的 xff0c 我们知道32为操作系统下一个进程是4g大小空间 xff0c 我们物理内存 xff08 也就是我们说的内存条 xff09 xff0c 假如我们以8g内存条定义 假如我们没有
  • 轻量型神经网络 shufflenet V1和shufflenet V2

    1 shufflenet V1 ShuffleNet是旷视科技 Face 43 43 提出的一种计算高效的CNN模型 xff0c 其和MobileNet和SqueezeNet等一样主要是想应用在移动端 所以 xff0c ShuffleNet
  • 详解C++中的const关键字

    1 const修饰指针 const修饰指针有三种情况 const修饰指针 常量指针 const修饰常量 指针常量 const即修饰指针 xff0c 又修饰常量 int main int a 61 10 int b 61 10 const修饰
  • CMake教程及使用案例

    1 CMake教程及使用案例 2 CMake Tutorial 3 https www cnblogs com crazyang p 14371953 html
  • gcc/g++编译选项&动态/静态库

    1 gcc g 43 43 编译选项 amp 动态 静态库
  • 外围设备对飞控的作用

    以下是我对外围设备的理解 xff08 如果理解有误 xff0c 请大佬们指正 xff09 桨叶 xff08 必须 xff09 xff1a 动力装置 电机 必须 xff1a 为无人机提供动力输出 电调ESC 必须 xff1a 电子调速器 控制
  • 飞控外围设备选型的注意事项

    合适的选型 xff08 如电机 43 桨叶 43 电池 xff09 可以兼顾无人机的航时和稳定性 xff0c 可将航时和稳定性发挥到极致 桨叶 xff1a 螺距和长度 桨叶的选择会影响无人机的航时和稳定性 xff0c 选的好航时和稳定性可以
  • STM32CubeMX学习笔记——FreeRTOS_任务创建与删除

    STM32CubeMX学习笔记 FreeRTOS 任务创建与删除 Github简介任务创建可视化创建方式代码创建方式 任务删除 Github https github com HaHaHaHaHaGe Planof2019 half tre
  • 关于串口发送的几个标志位

    首先了解STM32串口发送数据的简单过程 xff0c 如下图所示 发送 xff1a 软件将数据写到USARTx gt DR里面 xff0c 硬件自动把USARTx gt DR里面的数据并行转移到 发送移位寄存器 xff0c 然后硬件自动将发
  • TCP三步握手,以及相关问题

    三次握手是 TCP 连接的建立过程 在握手之前 xff0c 主动打开连接的客户端结束 CLOSE 阶段 xff0c 被动打开的服务器也结束 CLOSE 阶段 xff0c 并进入 LISTEN 阶段 随后进入三次握手阶段 xff1a 首先客户