LLA(经纬高)坐标转换成ENU(东北天)坐标的详细推导

2023-05-16

这是一篇经纬高(LLA)坐标转东北天坐标(ENU)的详细推导,并给出近似转换的过程和结果

参考资料:
https://blog.csdn.net/qq_34213260/article/details/109133847

在这里插入图片描述
ECEF坐标系和ENU坐标系之间的关系如上图所示,各坐标系的定义在此不再赘述。

LLA坐标:Lat、Lon、Alt坐标,表示在ECEF坐标系下,其中Lat和Lon用角度( 。 ^。 )或弧度(rad)表示,Alt用米(m)表示;
ENU坐标:东北天坐标系下的坐标,该坐标系的原点需要指定,原点向东为x轴,原点向北为y轴,原点指向天为z轴,构成右手直角坐标系,该系下的坐标表示都是米制单位;

LLA坐标转换成ENU坐标的过程主要分为两步:LLA->ECEF->ENU

其中主要参数的定义如下:
在这里插入图片描述
b = 6356752.3142 b=6356752.3142 b=6356752.3142
e 2 = f ( 2 − f ) e^2=f(2-f) e2=f(2f)
N = a 1 − e 2 s i n 2 ( l a t ) N=\frac{a}{\sqrt{1-e^2sin^2(lat)}} N=1e2sin2(lat) a
其中b为椭球短半径,e为椭球偏心率

(1)LLA->ECEF:(无需给定起点,一对一转换)
从最上面一幅图中可以轻易得到同一点在这两个坐标系之间的转换关系,如下:
X e c e f = ( N + a l t ) c o s ( l a t ) c o s ( l o n ) X_{ecef}=(N+alt)cos(lat)cos(lon) Xecef=(N+alt)cos(lat)cos(lon)
Y e c e f = ( N + a l t ) c o s ( l a t ) s i n ( l o n ) Y_{ecef}=(N+alt)cos(lat)sin(lon) Yecef=(N+alt)cos(lat)sin(lon)
Z e c e f = ( N ( 1 − e 2 ) + a l t ) s i n ( l a t ) Z_{ecef}=(N(1-e^2)+alt)sin(lat) Zecef=(N(1e2)+alt)sin(lat)
(2)ECEF->ENU:(需要给定起点)
假设ENU坐标系的坐标原点对应的ECEF坐标和LLA坐标分别为:
O e c e f = ( X 0 , Y 0 , Z 0 ) O_{ecef}=(X_0,Y_0,Z_0) Oecef=(X0,Y0,Z0)
O l l a = ( l a t 0 , l o n 0 , a l t 0 ) O_{lla}=(lat_0,lon_0,alt_0) Olla=(lat0,lon0,alt0)
假设空间中有另一点P,且:
P e c e f = ( X , Y , Z ) P_{ecef}=(X,Y,Z) Pecef=(X,Y,Z)
则P在ENU系下的坐标为:
P e n u = R E C E F E N U ( P e c e f − O e c e f ) (1) P_{enu}=R_{ECEF}^{ENU}(P_{ecef}-O_{ecef})\tag{1} Penu=RECEFENU(PecefOecef)(1)
其中只有 R E C E F E N U R_{ECEF}^{ENU} RECEFENU是未知的,下面对其进行推导:

R E C E F E N U R_{ECEF}^{ENU} RECEFENU可以分解为如下三个旋转过程:ECEF–>绕 Z e c e f Z_{ecef} Zecef轴逆时针旋转 λ \lambda λ(经度)–>绕 Y e c e f ′ Y_{ecef}^{'} Yecef轴逆时针旋转( 90 − ϕ 90-\phi 90ϕ)( ϕ : \phi: ϕ:纬度)–>绕 Z e c e f ′ ′ Z_{ecef}^{''} Zecef逆时针旋转90–>ENU

上述问题是典型的空间中点不动,坐标系转动的问题,按顺序记三次旋转分别为 R 1 、 R 2 、 R 3 R_1、R_2、R_3 R1R2R3,则:
R 1 = [ c o s ( λ ) s i n ( λ ) 0 − s i n ( λ ) c o s ( λ ) 0 0 0 1 ] R_1= \begin{bmatrix} cos(\lambda) & sin(\lambda) & 0 \\ -sin(\lambda) & cos(\lambda) & 0 \\ 0 & 0 & 1 \end{bmatrix} R1=cos(λ)sin(λ)0sin(λ)cos(λ)0001
R 2 = [ s i n ( ϕ ) 0 − c o s ( ϕ ) 0 1 0 c o s ( ϕ ) 0 s i n ( ϕ ) ] R_2= \begin{bmatrix} sin(\phi) & 0 & -cos(\phi) \\ 0 & 1 & 0 \\ cos(\phi) & 0 & sin(\phi) \end{bmatrix} R2=sin(ϕ)0cos(ϕ)010cos(ϕ)0sin(ϕ)
R 3 = [ 0 1 0 − 1 0 0 0 0 1 ] R_3= \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} R3=010100001
则:
R E C E F E N U = R 3 ∗ R 2 ∗ R 1 = [ − s i n ( λ ) c o s ( λ ) 0 − s i n ( ϕ ) c o s ( λ ) − s i n ( ϕ ) s i n ( λ ) c o s ( ϕ ) c o s ( ϕ ) c o s ( λ ) c o s ( ϕ ) s i n ( λ ) s i n ( ϕ ) ] R_{ECEF}^{ENU}=R_3*R_2*R_1= \begin{bmatrix} -sin(\lambda) & cos(\lambda) & 0 \\ -sin(\phi)cos(\lambda) & -sin(\phi)sin(\lambda) & cos(\phi) \\ cos(\phi)cos(\lambda) & cos(\phi)sin(\lambda) & sin(\phi) \end{bmatrix} RECEFENU=R3R2R1=sin(λ)sin(ϕ)cos(λ)cos(ϕ)cos(λ)cos(λ)sin(ϕ)sin(λ)cos(ϕ)sin(λ)0cos(ϕ)sin(ϕ)
将上式带入到公式(1)中可以得到:
P e n u = R E C E F E N U ( P e c e f − O e c e f ) = [ − s i n ( l o n 0 ) c o s ( l o n 0 ) 0 − s i n ( l a t 0 ) c o s ( l o n 0 ) − s i n ( l a t 0 ) s i n ( l o n 0 ) c o s ( l a t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) c o s ( l a t 0 ) s i n ( l o n 0 ) s i n ( l a t 0 ) ] ∗ [ X − X 0 Y − Y 0 Z − Z 0 ] (2) P_{enu}=R_{ECEF}^{ENU}(P_{ecef}-O_{ecef})= \begin{bmatrix} -sin(lon_0) & cos(lon_0) & 0 \\ -sin(lat_0)cos(lon_0) & -sin(lat_0)sin(lon_0) & cos(lat_0) \\ cos(lat_0)cos(lon_0) & cos(lat_0)sin(lon_0) & sin(lat_0) \end{bmatrix}* \begin{bmatrix} X-X_0 \\ Y-Y_0 \\ Z-Z_0 \end{bmatrix}\tag{2} Penu=RECEFENU(PecefOecef)=sin(lon0)sin(lat0)cos(lon0)cos(lat0)cos(lon0)cos(lon0)sin(lat0)sin(lon0)cos(lat0)sin(lon0)0cos(lat0)sin(lat0)XX0YY0ZZ0(2)
至此完成了LLA坐标到ENU坐标的转换,且无近似,下面对公式(2)进行近似推导


由于
X = ( N + a l t ) c o s ( l a t ) c o s ( l o n ) X=(N+alt)cos(lat)cos(lon) X=(N+alt)cos(lat)cos(lon)
Y = ( N + a l t ) c o s ( l a t ) s i n ( l o n ) Y=(N+alt)cos(lat)sin(lon) Y=(N+alt)cos(lat)sin(lon)
Z = ( N ( 1 − e 2 ) + a l t ) s i n ( l a t ) Z=(N(1-e^2)+alt)sin(lat) Z=(N(1e2)+alt)sin(lat)
X 0 = ( N 0 + a l t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) X_0=(N_0+alt_0)cos(lat_0)cos(lon_0) X0=(N0+alt0)cos(lat0)cos(lon0)
Y 0 = ( N 0 + a l t 0 ) c o s ( l a t 0 ) s i n ( l o n 0 ) Y_0=(N_0+alt_0)cos(lat_0)sin(lon_0) Y0=(N0+alt0)cos(lat0)sin(lon0)
Z 0 = ( N 0 ( 1 − e 2 ) + a l t 0 ) s i n ( l a t 0 ) Z_0=(N_0(1-e^2)+alt_0)sin(lat_0) Z0=(N0(1e2)+alt0)sin(lat0)
所以
X − X 0 = ( N + a l t ) c o s ( l a t ) c o s ( l o n ) − ( N 0 + a l t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) = ( N + a l t ) c o s ( l a t ) c o s ( l o n ) − ( N + a l t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) = ( N + a l t 0 + δ a l t ) c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) − ( N + a l t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) = ( N + a l t 0 ) c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) − ( N + a l t 0 ) c o s ( l a t 0 ) c o s ( l o n 0 ) + δ a l t c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) = ( N + a l t 0 ) [ c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) − c o s ( l a t 0 ) c o s ( l o n 0 ) ] + δ a l t c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) = ( N + a l t 0 ) [ ( c o s ( l a t 0 ) c o s ( δ l a t ) − s i n ( l a t 0 ) s i n ( δ l a t ) ) ( c o s ( l o n 0 ) c o s ( δ l o n ) − s i n ( l o n 0 ) s i n ( δ l o n ) ) − c o s ( l a t 0 ) c o s ( l o n 0 ) ] + δ a l t c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) = ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) c o s ( δ l a t ) s i n ( δ l o n ) − s i n ( l a t 0 ) c o s ( l o n 0 ) s i n ( δ l a t ) c o s ( δ l o n ) ) + δ a l t c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) = ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − s i n ( l a t 0 ) c o s ( l o n 0 ) ∗ δ l a t ) + δ a l t c o s ( l a t 0 + δ l a t ) c o s ( l o n 0 + δ l o n ) = ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − s i n ( l a t 0 ) c o s ( l o n 0 ) ∗ δ l a t ) + δ a l t [ ( c o s ( l a t 0 ) − s i n ( l a t 0 ) ∗ δ l a t ) ( c o s ( l o n 0 ) − s i n ( l o n 0 ) ∗ δ l o n ) ] = ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − s i n ( l a t 0 ) c o s ( l o n 0 ) ∗ δ l a t ) + δ a l t [ c o s ( l a t 0 ) c o s ( l o n 0 ) − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − c o s ( l o n 0 ) s i n ( l a t 0 ) ∗ δ l a t ] = ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − s i n ( l a t 0 ) c o s ( l o n 0 ) ∗ δ l a t ) + δ a l t c o s ( l a t 0 ) c o s ( l o n 0 ) \begin{aligned} X-X_0 &= (N+alt)cos(lat)cos(lon)-(N_0+alt_0)cos(lat_0)cos(lon_0)\\ &= (N+alt)cos(lat)cos(lon)-(N+alt_0)cos(lat_0)cos(lon_0)\\ &= (N+alt_0+\delta{alt})cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})-(N+alt_0)cos(lat_0)cos(lon_0)\\ &= (N+alt_0)cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})-(N+alt_0)cos(lat_0)cos(lon_0)+\delta{alt}cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})\\ &= (N+alt_0)\left[cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})-cos(lat_0)cos(lon_0) \right]+\delta{alt}cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})\\ &= (N+alt_0)\left[(cos(lat_0)cos(\delta{lat})-sin(lat_0)sin(\delta{lat}))(cos(lon_0)cos(\delta{lon})-sin(lon_0)sin(\delta{lon}))-cos(lat_0)cos(lon_0) \right]+\delta{alt}cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})\\ &= (N+alt_0)(-cos(lat_0)sin(lon_0)cos(\delta{lat})sin(\delta{lon})-sin(lat_0)cos(lon_0)sin(\delta{lat})cos(\delta{lon}))+\delta{alt}cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})\\ &= (N+alt_0)(-cos(lat_0)sin(lon_0)*\delta{lon}-sin(lat_0)cos(lon_0)*\delta{lat})+\delta{alt}cos(lat_0+\delta{lat})cos(lon_0+\delta{lon})\\ &= (N+alt_0)(-cos(lat_0)sin(lon_0)*\delta{lon}-sin(lat_0)cos(lon_0)*\delta{lat})+\delta{alt}\left[(cos(lat_0)-sin(lat_0)*\delta{lat})(cos(lon_0)-sin(lon_0)*\delta{lon})\right]\\ &= (N+alt_0)(-cos(lat_0)sin(lon_0)*\delta{lon}-sin(lat_0)cos(lon_0)*\delta{lat})+\delta{alt}\left[cos(lat_0)cos(lon_0)-cos(lat_0)sin(lon_0)*\delta{lon}-cos(lon_0)sin(lat_0)*\delta{lat} \right]\\ &= (N+alt_0)(-cos(lat_0)sin(lon_0)*\delta{lon}-sin(lat_0)cos(lon_0)*\delta{lat})+\delta{alt}cos(lat_0)cos(lon_0) \end{aligned} XX0=(N+alt)cos(lat)cos(lon)(N0+alt0)cos(lat0)cos(lon0)=(N+alt)cos(lat)cos(lon)(N+alt0)cos(lat0)cos(lon0)=(N+alt0+δalt)cos(lat0+δlat)cos(lon0+δlon)(N+alt0)cos(lat0)cos(lon0)=(N+alt0)cos(lat0+δlat)cos(lon0+δlon)(N+alt0)cos(lat0)cos(lon0)+δaltcos(lat0+δlat)cos(lon0+δlon)=(N+alt0)[cos(lat0+δlat)cos(lon0+δlon)cos(lat0)cos(lon0)]+δaltcos(lat0+δlat)cos(lon0+δlon)=(N+alt0)[(cos(lat0)cos(δlat)sin(lat0)sin(δlat))(cos(lon0)cos(δlon)sin(lon0)sin(δlon))cos(lat0)cos(lon0)]+δaltcos(lat0+δlat)cos(lon0+δlon)=(N+alt0)(cos(lat0)sin(lon0)cos(δlat)sin(δlon)sin(lat0)cos(lon0)sin(δlat)cos(δlon))+δaltcos(lat0+δlat)cos(lon0+δlon)=(N+alt0)(cos(lat0)sin(lon0)δlonsin(lat0)cos(lon0)δlat)+δaltcos(lat0+δlat)cos(lon0+δlon)=(N+alt0)(cos(lat0)sin(lon0)δlonsin(lat0)cos(lon0)δlat)+δalt[(cos(lat0)sin(lat0)δlat)(cos(lon0)sin(lon0)δlon)]=(N+alt0)(cos(lat0)sin(lon0)δlonsin(lat0)cos(lon0)δlat)+δalt[cos(lat0)cos(lon0)cos(lat0)sin(lon0)δloncos(lon0)sin(lat0)δlat]=(N+alt0)(cos(lat0)sin(lon0)δlonsin(lat0)cos(lon0)δlat)+δaltcos(lat0)cos(lon0)
同理,有
Y − Y 0 = ( N + a l t 0 ) ( δ l o n c o s ( l a t 0 ) c o s ( l o n 0 ) − δ l a t s i n ( l a t 0 ) s i n ( l o n 0 ) ) + δ a l t c o s ( l a t 0 ) s i n ( l o n 0 ) Y-Y_0=(N+alt_0)(\delta{lon}cos(lat_0)cos(lon_0)-\delta{lat}sin(lat_0)sin(lon_0))+\delta{alt}cos(lat_0)sin(lon_0) YY0=(N+alt0)(δloncos(lat0)cos(lon0)δlatsin(lat0)sin(lon0))+δaltcos(lat0)sin(lon0)
将以上两式带入到(2)中可以得到点P在ENU系下的东向坐标:
e = − s i n ( l o n 0 ) ∗ ( X − X 0 ) + c o s ( l o n 0 ) ∗ ( Y − Y 0 ) = − s i n ( l o n 0 ) ( ( N + a l t 0 ) ( − c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n − s i n ( l a t 0 ) c o s ( l o n 0 ) ∗ δ l a t ) + δ a l t c o s ( l a t 0 ) c o s ( l o n 0 ) ) + c o s ( l o n 0 ) ( ( N + a l t 0 ) ( δ l o n c o s ( l a t 0 ) c o s ( l o n 0 ) − δ l a t s i n ( l a t 0 ) s i n ( l o n 0 ) ) + δ a l t c o s ( l a t 0 ) s i n ( l o n 0 ) ) = ( N + a l t 0 ) ( s i n ( l o n 0 ) c o s ( l a t 0 ) s i n ( l o n 0 ) ∗ δ l o n ) + ( N + a l t 0 ) ( c o s ( l a t 0 ) c o s 2 ( l o n 0 ) ∗ δ l o n ) = ( N + a l t 0 ) ∗ δ l o n c o s ( l a t 0 ) ( s i n 2 ( l o n 0 ) + c o s 2 ( l o n 0 ) ) = ( N + a l t 0 ) ∗ δ l o n c o s ( l a t 0 ) ≈ a ∗ δ l o n c o s ( l a t 0 ) \begin{aligned} e &= -sin(lon_0)*(X-X_0)+cos(lon_0)*(Y-Y_0)\\ &= -sin(lon_0)((N+alt_0)(-cos(lat_0)sin(lon_0)*\delta{lon}-sin(lat_0)cos(lon_0)*\delta{lat})+\delta{alt}cos(lat_0)cos(lon_0))+cos(lon_0)((N+alt_0)(\delta{lon}cos(lat_0)cos(lon_0)-\delta{lat}sin(lat_0)sin(lon_0))+\delta{alt}cos(lat_0)sin(lon_0))\\ &= (N+alt_0)(sin(lon_0)cos(lat_0)sin(lon_0)*\delta{lon})+(N+alt_0)(cos(lat_0)cos^2(lon_0)*\delta{lon})\\ &= (N+alt_0)*\delta{lon}cos(lat_0)(sin^2(lon_0)+cos^2(lon_0))\\ &= (N+alt_0)*\delta{lon}cos(lat_0)\\ &\approx a*\delta{lon}cos(lat_0) \end{aligned} e=sin(lon0)(XX0)+cos(lon0)(YY0)=sin(lon0)((N+alt0)(cos(lat0)sin(lon0)δlonsin(lat0)cos(lon0)δlat)+δaltcos(lat0)cos(lon0))+cos(lon0)((N+alt0)(δloncos(lat0)cos(lon0)δlatsin(lat0)sin(lon0))+δaltcos(lat0)sin(lon0))=(N+alt0)(sin(lon0)cos(lat0)sin(lon0)δlon)+(N+alt0)(cos(lat0)cos2(lon0)δlon)=(N+alt0)δloncos(lat0)(sin2(lon0)+cos2(lon0))=(N+alt0)δloncos(lat0)aδloncos(lat0)
类似的,可以得到n、u坐标,最终得到如下的近似结果:
P e n u = [ e n u ] = [ a ∗ δ l o n c o s ( l a t 0 ) a ∗ δ l a t δ a l t ] P_{enu}= \begin{bmatrix} e\\n\\u \end{bmatrix}= \begin{bmatrix} a*\delta{lon}cos(lat_0)\\a*\delta{lat}\\\delta{alt} \end{bmatrix} Penu=enu=aδloncos(lat0)aδlatδalt

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

LLA(经纬高)坐标转换成ENU(东北天)坐标的详细推导 的相关文章

随机推荐