C++ 程序编译过程

2023-05-16

前言

C语言的编译链接过程要把我们编写的一个c程序(源代码)转换成可以在硬件上运行的程序(可执行代码),需要进行编译和链接。编译就是把文本形式源代码翻译为机器语言形式的目标文件的过程。链接是把目标文件、操作系统的启动代码和用到的库文件进行组织,形成最终生成可执行代码的过程。过程图解如下:

在这里插入图片描述

从图上可以看到,整个代码的编译过程分为编译和链接两个过程,编译对应图中的大括号括起的部分,其余则为链接过程。

1. 编译过程

编译过程又可以分成两个阶段:编译和汇编。

编译
编译是读取源程序(字符流),对之进行词法和语法的分析,将高级语言指令转换为功能等效的汇编代码,源文件的编译过程包含两个主要阶段:

编译预处理
读取c源程序,对其中的伪指令(以# 开头的指令)和特殊符号进行处理。
伪指令主要包括以下四个方面:

  1. 宏定义指令,如# define Name TokenString,# undef等。
    对于前一个伪指令,预编译所要做的是将程序中的所有Name用TokenString替换,但作为字符串常量的 Name则不被替换。对于后者,则将取消对某个宏的定义,使以后该串的出现不再被替换。
  2. 条件编译指令,如# ifdef,# ifndef,# else,# elif,# endif等。
    这些伪指令的引入使得程序员可以通过定义不同的宏来决定编译程序对哪些代码进行处理。预编译程序将根据有关的文件,将那些不必要的代码过滤掉。
  3. 头文件包含指令,如# include “FileName” 或者# include < FileName> 等。
    在头文件中一般用伪指令# define定义了大量的宏(最常见的是字符常量),同时包含有各种外部符号的声明。
    采用头文件的目的主要是为了使某些定义可以供多个不同的C源程序使用。因为在需要用到这些定义的C源程序中,只需加上一条# include语句即可,而不必再在此文件中将这些定义重复一遍。预编译程序将把头文件中的定义统统都加入到它所产生的输出文件中,以供编译程序对之进行处理。
    包含到c源程序中的头文件可以是系统提供的,这些头文件一般被放在/ usr/ include目录下。在程序中# include它们要使用尖括号(< >)。另外开发人员也可以定义自己的头文件,这些文件一般与c源程序放在同一目录下,此时在# include中要用双引号("")。
  4. 特殊符号,预编译程序可以识别一些特殊的符号。
    例如在源程序中出现的LINE标识将被解释为当前行号(十进制数),FILE则被解释为当前被编译的C源程序的名称。预编译程序对于在源程序中出现的这些串将用合适的值进行替换。

预编译程序所完成的基本上是对源程序的“替代”工作。经过此种替代,生成一个没有宏定义、没有条件编译指令、没有特殊符号的输出文件。这个文件的含义同没有经过预处理的源文件是相同的,但内容有所不同。下一步,此输出文件将作为编译程序的输入而被翻译成为机器指令。

编译、优化阶段
经过预编译得到的输出文件中,只有常量;如数字、字符串、变量的定义,以及C语言的关键字,如main, if , else , for , while , { , } , + , - , * , \ 等等。

编译程序所要作得工作就是通过词法分析和语法分析,在确认所有的指令都符合语法规则之后,将其翻译成等价的中间代码表示或汇编代码。

优化处理是编译系统中一项比较艰深的技术。它涉及到的问题不仅同编译技术本身有关,而且同机器的硬件环境也有很大的关系。优化一部分是对中间代码的优化。这种优化不依赖于具体的计算机。另一种优化则主要针对目标代码的生成而进行的。

对于前一种优化,主要的工作是删除公共表达式、循环优化(代码外提、强度削弱、变换循环控制条件、已知量的合并等)、复写传播,以及无用赋值的删除,等等。

后一种类型的优化同机器的硬件结构密切相关,最主要的是考虑是如何充分利用机器的各个硬件寄存器存放有关变量的值,以减少对于内存的访问次数。另外,如何根据机器硬件执行指令的特点(如流水线、RISC、CISC、VLIW等)而对指令进行一些调整使目标代码比较短,执行的效率比较高,也是一个重要的研究课题。

经过优化得到的汇编代码必须经过汇编程序的汇编转换成相应的机器指令,方可能被机器执行。

汇编
汇编过程实际上指把汇编语言代码翻译成目标机器指令的过程。对于被翻译系统处理的每一个C语言源程序,都将最终经过这一处理而得到相应的目标文件。目标文件中所存放的也就是与源程序等效的目标的机器语言代码。

目标文件由段组成。通常一个目标文件中至少有两个段:

  1. 代码段:该段中所包含的主要是程序的指令。该段一般是可读和可执行的,但一般却不可写。
  2. 数据段:主要存放程序中要用到的各种全局变量或静态的数据。一般数据段都是可读,可写,可执行的。

UNIX环境下主要有三种类型的目标文件:

  1. 可重定位文件
    其中包含有适合于其它目标文件链接来创建一个可执行的或者共享的目标文件的代码和数据。
  2. 共享的目标文件
    这种文件存放了适合于在两种上下文里链接的代码和数据。
    第一种是链接程序可把它与其它可重定位文件及共享的目标文件一起处理来创建另一个目标文件;
    第二种是动态链接程序将它与另一个可执行文件及其它的共享目标文件结合到一起,创建一个进程映象。
  3. 可执行文件
    它包含了一个可以被操作系统创建一个进程来执行之的文件。

汇编程序生成的实际上是第一种类型的目标文件。对于后两种还需要其他的一些处理方能得到,这个就是链接程序的工作了。

2. 链接过程

由汇编程序生成的目标文件并不能立即就被执行,其中可能还有许多没有解决的问题。

例如,某个源文件中的函数可能引用了另一个源文件中定义的某个符号(如变量或者函数调用等);在程序中可能调用了某个库文件中的函数,等等。所有的这些问题,都需要经链接程序的处理方能得以解决。

链接程序的主要工作就是将有关的目标文件彼此相连接,也即将在一个文件中引用的符号同该符号在另外一个文件中的定义连接起来,使得所有的这些目标文件成为一个能够被操作系统装入执行的统一整体。

根据开发人员指定的同库函数的链接方式的不同,链接处理可分为两种:

  1. 静态链接
    在这种链接方式下,函数的代码将从其所在的静态链接库中被拷贝到最终的可执行程序中。这样该程序在被执行时这些代码将被装入到该进程的虚拟地址空间中。静态链接库实际上是一个目标文件的集合,其中的每个文件含有库中的一个或者一组相关函数的代码。
  2. 动态链接
    在此种方式下,函数的代码被放到称作是动态链接库或共享对象的某个目标文件中。链接程序此时所作的只是在最终的可执行程序中记录下共享对象的名字以及其它少量的登记信息。在此可执行文件被执行时,动态链接库的全部内容将被映射到运行时相应进程的虚地址空间。动态链接程序将根据可执行程序中记录的信息找到相应的函数代码。

对于可执行文件中的函数调用,可分别采用动态链接或静态链接的方法。使用动态链接能够使最终的可执行文件比较短小,并且当共享对象被多个进程使用时能节约一些内存,因为在内存中只需要保存一份此共享对象的代码。但并不是使用动态链接就一定比使用静态链接要优越。在某些情况下动态链接可能带来一些性能上损害。

3. GCC的编译链接

我们在linux使用的gcc编译器便是把以上的几个过程进行捆绑,使用户只使用一次命令就把编译工作完成,这的确方便了编译工作,但对于初学者了解编译过程就很不利了,下图便是gcc代理的编译过程:
在这里插入图片描述
从上图可以看到:

  1. 预编译
    将.c 文件转化成 .i文件
    使用的gcc命令是:gcc –E
    对应于预处理命令cpp
  2. 编译
    将.c/.h文件转换成.s文件
    使用的gcc命令是:gcc –S
    对应于编译命令 cc –S
  3. 汇编
    将.s 文件转化成 .o文件
    使用的gcc 命令是:gcc –c
    对应于汇编命令是 as
  4. 链接
    将.o文件转化成可执行程序
    使用的gcc 命令是: gcc
    对应于链接命令是 ld

总结起来编译过程就上面的四个过程:预编译处理(.c) --> 编译、优化程序(.s、.asm)--> 汇编程序(.obj、.o、.a、.ko) --> 链接程序(.exe、.elf、.axf等)。

4. 总结

C语言编译的整个过程是非常复杂的,里面涉及到的编译器知识、硬件知识、工具链知识都是非常多的,深入了解整个编译过程对工程师理解应用程序的编写是有很大帮助的,希望大家可以多了解一些,在遇到问题时多思考、多实践。

一般情况下,我们只需要知道分成编译和链接两个阶段,编译阶段将源程序(*.c) 转换成为目标代码(一般是obj文件,至于具体过程就是上面说的那些阶段),链接阶段是把源程序转换成的目标代码(obj文件)与你程序里面调用的库函数对应的代码连接起来形成对应的可执行文件(exe文件)就可以了,其他的都需要在实践中多多体会才能有更深的理解。




C/C++编译过程
C/C++编译过程主要分为4个过程
1) 编译预处理
2) 编译、优化阶段
3) 汇编过程
4) 链接程序

一、编译预处理
(1)宏定义指令,如#define Name TokenString,#undef等。 对于前一个伪指令,预编译所要做的是将程序中的所有Name用TokenString替换,
但作为字符串常量的 Name则不被替换。对于后者,则将取消对某个宏的定义,使以后该串的出现不再被替换。
(2)条件编译指令,如#ifdef,#ifndef,#else,#elif,#endif等。 这些伪指令的引入使得程序员可以通过定义不同的宏来决定编译程序对哪些代码进行处理。
预编译程序将根据有关的文件,将那些不必要的代码过滤掉
(3) 头文件包含指令,如#include “FileName"或者#include 等。 在头文件中一般用伪指令#define定义了大量的宏(最常见的是字符常量),
同时包含有各种外部符号的声明。 包含到c源程序中的头文件可以是系统提供的,这些头文件一般被放在/usr/include目录下。
在程序中#include它们要使用尖括号(< >)。
另外开发人员也可以定义自己的头文件,这些文件一般与c源程序放在同一目录下,此时在#include中要用双引号(”")。
(4)特殊符号,预编译程序可以识别一些特殊的符号。 例如在源程序中出现的#line标识将被解释为当前行号(十进制数),
上面程序实现了对宏line的运用
(5)预处理模块 预处理工作由#pragma命令完成,#Pragma命令将设定编译器的状态或者是指示编译器完成一些特定的动作。
#pragma指令对每个编译器给出了一个方法,在保持与C和C++语言完全兼容的情况下,给出主机或操作系统专有的特征。
依据定义,编译指示是机器或操作系统专有的,且对于每个编译器都是不同的。
打开C标准库函数,如stdio.h,我们总能找到下面这一句指示编译器初始化堆栈

#include "iostream"
#line 100
using namespace std;
int main(int argc, char* argv[])
{
cout<<"__LINE__:"<<__LINE__<<endl;
return 0;
}

/*--------------------

  • 输出结果为:
  • LINE:103
  • 本来输出的结果应该是 7,但是用#line指定行号之后,使下一行的行号变为,
  • 到输出语句恰为行103
    ---------------------*/
    C/C++编译过程
    或者程序指示编译器去链接系统动态链接库或用户自定义链接库

二、编译、优化阶段
经过预编译得到的输出文件中,只有常量;如数字、字符串、变量的定义,以及C语言的关键字,如main,if,else,for,while,{,}, +,-,*,\等等。
《编译原理》 中我们可以了解到一个编译器对程序代码的编译主要分为下面几个过程:

a) 词法分析
b) 语法分析
c) 语义分析
d) 中间代码生成
e) 代码优化
f) 代码生成
g) 符号表管理
h) 将多个步骤组合成趟
i) 编译器构造工具

在这里我们主要强调对函数压栈方式(函数调用约定)的编译处理
C与C++语言调用方式大体相同,下面是几种常用的调用方式:
__cdecl 是C DECLaration的缩写(declaration,声明),表示C语言默认的函数调用方法:所有参数从右到左依次入栈,
这些参数由调用者清除,称为手动清栈。被调用函数不需要求调用者传递多少参数,调用者传递过多或者过少的参数,
甚至完全不同的参数都不会产生编译阶段的错误。
_stdcall 是StandardCall的缩写,是C++的标准调用方式:所有参数从右到左依次入栈,如果是调用类成员的话,
最后一个入栈的是this指针。这些堆栈中的参数由被调用的函数在返回后清除,使用的指令是 retnX,X表示参数占用的字节数,
CPU在ret之后自动弹出X个字节的堆栈空间。称为自动清栈。函数在编译的时候就必须确定参数个数,
并且调用者必须严格的控制参数的生成,不能多,不能少,否则返回后会出错。
PASCAL 是Pascal语言的函数调用方式,在早期的c/c++语言中使用这种调用方式,
参数压栈顺序与前两者相反,但现在我们在程序中见到的都是它的演化版本,其实

#pragma comment(lib,_T("GDI32.lib"))
#ifdef _MSC_VER
/*
* Currently, all MS C compilers for Win32 platforms default to 8 byte
* alignment.
*/
#pragma pack(push,_CRT_PACKING)
#endif /* _MSC_VER */

C/C++编译过程
质是另一种调用方式
_fastcall是编译器指定的快速调用方式。由于大多数的函数参数个数很少,使用堆栈传递比较费时。因此_fastcall通常规定将前两个(或若干个)参数由寄存器传递,其余参数还是通过堆栈传递。不同编译器编译的程序规定的寄存器不同。返回方式和_stdcall相当。
_thiscall 是为了解决类成员调用中this指针传递而规定的。_thiscall要求把this指针放在特定寄存器中,该寄存器由编译器决定。VC使用ecx,Borland的C++编译器使用eax。返回方式和_stdcall相当。
_fastcall 和 _thiscall涉及的寄存器由编译器决定,因此不能用作跨编译器的接口。所以Windows上的COM对象接口都定义为_stdcall调用方式。
C中不加说明默认函数为_cdecl方式(C中也只能用这种方式),C++也一样,但是默认的调用方式可以在IDE环境中设置。简单的我们可以从printf函数看出
printf使用从从左至右压栈,返回int型并由_CRTIMP指定封在动态链接库中。
通过金典的hello world程序我们可以知道编译器对其argc和argv[]这两个参数进行了压栈,并且argc留在了栈顶
优化处理是编译系统中一项比较艰深的技术。它涉及到的问题不仅同编译技术本身有关,而且同机器的硬件环境也有很大的关系。优化处理主要分为下面几个过程:

1) 局部优化
a) 基本块的划分
b) 基本块的变换
c) 基本块的DAG表示
d) DAG的应用
e) 构造算法讨论
2) 控制流分析和循环优化
a) 程序流图与循环

/*经典的hello world*/
#include <stdio.h>
int main(int argc, char* argv[])
{
printf("hello world");
return 0;
}
_Check_return_opt_ _CRTIMP int __cdecl printf(_In_z_ _Printf_format_string_ const char * _Format, ...);
#define CALLBACK _stdcall /* Windows程序回调函数*/
#define WINAPI _stdcall
#define WINAPIV _cdecl
#define PASCAL _stdcall /*在c++语言中使用了StandardCall调用方式*/
#define PASCAL _cdecl/*在c语言中使用了C DECLaration调用方式*/

C/C++编译过程

b) 循环
c) 循环的查找
d) 可归约流图
e) 循环优化
3) 数据流的分析与全局优化
a) 一些主要的概念
b) 数据流方程的一般形式
c) 到达一定值数据流方程
d) 可用表达式及其数据流方程
e) 活跃变量数据流方程
f) 复写传播

经过优化得到的汇编代码必须经过汇编程序的汇编转换成相应的机器指令,方可能被机器执行。

三、汇编过程
汇编过程实际上指把汇编语言代码翻译成目标机器指令的过程。对于被翻译系统处理的每一个C语言源程序,
都将最终经过这一处理而得到相应的目标文件。目标文件中所存放的也就是与源程序等效的目标的机器语言代码。
目标文件由段组成。通常一个目标文件中至少有两个段: 代码段:该段中所包含的主要是程序的指令。
该段一般是可读和可执行的,但一般却不可写。 数据段:主要存放程序中要用到的各种全局变量或静态的数据。一般数据段都是可读,可写,可执行的。

四、链接程序
由汇编程序生成的目标文件并不能立即就被执行,其中可能还有许多没有解决的问题。
例如,某个源文件中的函数可能引用了另一个源文件中定义的某个符号(如变量或者函数调用等);
在程序中可能调用了某个库文件中的函数,等等。所有的这些问题,都需要经链接程序的处理方能得以解决。
链接程序的主要工作就是将有关的目标文件彼此相连接,也即将在一个文件中引用的符号同该符号在另外一个文件中的定义连接起来,
使得所有的这些目标文件成为一个能够诶操作系统装入执行的统一整体。
根据开发人员指定的同库函数的链接方式的不同,链接处理可分为两种:
(1)静态链接 在这种链接方式下,函数的代码将从其所在地静态链接库中被拷贝到最终的可执行程序中。
这样该程序在被执行时这些代码将被装入到该进程的虚拟地址空间中。静态链接库实际上是一个目标文件的集合,
其中的每个文件含有库中的一个或者一组相关函数的代码。
(2) 动态链接
在此种方式下,函数的代码被放到称作是动态链接库或共享对象的某个目标文件中。链接程序此时所作的只是在最终的可执行程序中记录下共享对象的名字以及其它少量的登记信息。在此可执行文件被执行时,动态链接库的全部内容将被映射到运行时相应进程的虚地址空间。动态链接程序将根据可执行程序中记录的信息找到相应的函数代码。C/C++编译过程对于可执行文件中的函数调用,可分别采用动态链接或静态链接的方法。使用动态链接能够使最终的可执行文件比较短小,并且当共享对象被多个进程使用时能节约一些内存,因为在内存中只需要保存一份此共享对象的代码。但并不是使用动态链接就一定比使用静态链接要优越。在某些情况下动态链接可能带来一些性能上损害。
----------------------------------------------------作者 张彦升

文章转载自:https://www.cnblogs.com/mickole/articles/3659112.html

谢谢,创作不易,大侠请留步… 动起可爱的双手,来个赞再走呗 <( ̄︶ ̄)>

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++ 程序编译过程 的相关文章

  • QT中设置背景颜色

    layout大小设置方法 xff1a reSize QSize 600 600 就ok了 xff0c 这个是设置主窗口的大小 xff0c layout会自动适应主窗口的 QWidget是所有用户界面对象的基类 xff0c 这意味着可以用同样
  • vs2013 Warning 44 warning LNK4099: PDB 'vc120.pdb' was not found with '

    Warning 20 warning LNK4099 PDB 39 vc120 pdb 39 was not found with 39 ABC lib XYZ obj 39 or at 39 E test Release vc120 pd
  • QT信号与槽的6种连接方式以及自定义参数传递

    前言 一 信号与槽的连接 二 connect的第五个参数 三 传递参数为自定义参数时 扩展 前言 QT提供了信号与槽机制来实现对象之间的通信 xff0c 只有QObject及其派生类才能使用信号和槽机制 xff0c 且在类之中还需要使用Q
  • QT中QThread的各个方法,UI线程关系,事件关系详解(2)

    QThread 的两种使用方法 1 不使用事件循环 这是官方的 Manual example 以及相关书籍中都介绍的一种的方法 a 子类化 QThread b 重载 run 函数 xff0c run函数内有一个 while 或 for 的死
  • QT或MFC中调用Opencv需要引用库时或自身的架构库时可以添加环境变量引用路径下文件的方式搭建环境避免可执行程序下文件过多显得臃肿

    在计算机系统环境变量中在Path里添加要引用的lib dll等库文件
  • C# 中delegate、event、Action、Func详解

    都属于委托 xff0c 只是展现的形式不同而已 xff0c 无论哪种 xff0c 其实都可以采用delegate实现 xff0c 为什么会出现另外的三种呢 xff1f 因为delegate是很宽泛的 xff0c 格式内容都不受限 xff0c
  • (吐了呀,相同代码,相同case测试结果不一样)1052 Linked List Sorting

    在刷PAT的过程中 xff0c 关于一个样例的疑问 include lt iostream gt include lt list gt include lt vector gt include lt unordered map gt inc
  • C# 委托,泛型委托,匿名委托,lambda表达式

    一 泛型的定义及作用 泛型 generic 是C 2 0推出的新语法 xff0c 它是专门为处理多段代码在不同的数据类型上执行相同的指令的情况而设计的 比如说编程时 xff0c 碰到功能非常相似的模块 xff0c 只是它们所处理的数据类型不
  • C#连接sqlServer数据库详解

    C 是如何跟SQL Server进行连接的 xff1f 在C NET程序设计中 xff0c 离不开ADO NET ADO NET是 NET连接数据库的重要组件 使用其可以很方便地访问数据库 xff0c ADO NET还可以访问Oracle数
  • C++ 如何用创建txt文件,并且写入内容(汇总)

    void CreatTxt char pathName unsigned char rBuffer int length 创建txt文件 char path 61 34 C 1 txt 34 你要创建文件的路径 ofstream fout
  • 常用邮箱的 IMAP/POP3/SMTP 设置

    通过网上查找的资料和自己的总结完成了下面的文章 xff0c 看完之后相信大家对这三种协议会有更深入的理解 如有错误的地方望指正 POP3 POP3是Post Office Protocol 3的简称 xff0c 即邮局协议的第3个版本 它规
  • Critical error detected c0000374

    最近发现一个新奇的情况导致这个问题出现 版本不一致 简单来说 xff0c 就是有一个类A xff0c 调用类B xff1b 但是这个类B有两个版本B1 xff0c B2 大小不一致 xff1b 类B包含两个类C D 在调用类B时 xff0c
  • 串口通信协议

    概念 串口通信 xff08 Serial Communications xff09 的概念非常简单 xff0c 串口按位 xff08 bit xff09 发送和接收字节 尽管比按字节 xff08 byte xff09 的并行通信慢 xff0
  • [二] Nuttx移植-星瞳pyboard开发板

    目录 一 Nuttx配置文件二 构建自己的配置文件1 include board h文件构建2 kernel amp amp scripts 构建3 nsh defconfig 构建4 src 构建5 Kconfig 构建 三 修改 nut
  • Parrot Bebop2 与ROS

    第二章 无人机平台与开发环境搭建 本章主要介绍无人机平台及相关开发环境的搭建 包括介绍Parrot Bebop2的相关规格与使用说明 xff0c 以及ROS的操作系统的简介 发展历程 安装流程 xff0c 还有ROS的数据通信方式和ROS的
  • python2与python3解析数据

    蓝牙模块接收到监测设备传输来的数据 xff0c 封装格式为十六进制的数据帧 xff0c 蓝牙模块将数据通过串口发送给wrtnode 2p xff0c wrtnode通过ser2net服务将数据转为网络数据 xff0c 可以通过监听192 1
  • 上传本地项目到github远程仓库

    前提已经注册github账号并在本地电脑安装git客户端 1 为Github账户设置SSH key 进入git bash xff0c 通过如下命令生成 ssh keygen t rsa C 34 github所绑定的邮箱 34 一路回车 x
  • 卫星导航定位技术二:由星历参数求解卫星时空位置

    卫星星历是描述卫星运动轨道的信息 也可以说卫星星历就是一组对应某一时刻的轨道参数及其变率 有了卫星星历就可以计算出任意时刻的卫星位置及其速度 GPS卫星星历分为预报星历和后处理星历 预报星历又称广播星历 GPS广播星历参数共有16个 xff
  • 模式识别:最小错误率贝叶斯决策分类

    一 引言 1 用贝叶斯决策理论分类要事先知道两个条件及要求 xff1a 各类的先验概率 xff1a 及特征向量的条件概率密度 xff1a 或后验概率 xff1a 决策分类的类别一定 2 解决的问题 xff1a 已知一定数目的样本 xff0c
  • 模式识别:BP神经网络算法

    1 BP神经网络分类器 1 1 BP算法基本原理 神经网络结构大概如下图1 1 xff1a 图1 1 包括输入层 xff0c 隐层和输出层 包含一层隐层的神经网络称为浅层神经网络 xff0c 即SNN 包含多层隐层的神经网络称为深度神经网络

随机推荐

  • 模式识别:C-means(K-means)聚类算法与分级聚类(层次聚类)算法

    C均值聚类算法与分级聚类算法的聚类分析 一 实验目的 理解聚类的整体思想 xff0c 了解聚类的一般方法 xff1b 掌握 C means与分级聚类算法算法思想及原理 xff0c 并能够熟练运用这些算法进行聚类分析 xff1b 能够分析二者
  • ROS 配置多网口通讯

    列出当前所有的网络设备 ifconfig a 结果如下 xff1a enp1s0 Link encap Ethernet HWaddr 00 2f 5c 68 06 ad inet addr 192 168 1 101 Bcast 192
  • qt creator开启openMP加速方法

    环境 Qt creator4 11 for msvc2017 内置openmp库 启用方法 1 在pro文件加上QMAKE CXXFLAGS 43 61 openmp 2 添加头文件omp h
  • c++中::的用法

    是运算符中等级最高的 xff0c 它分为三种 1 global scope 全局作用域符 xff09 xff0c 用法 xff08 name 2 class scope 类作用域符 xff09 xff0c 用法 class name 3 n
  • 【ubuntu】——gflags&glog卸载与安装

    gflags glog 通过apt安装的glog xff0c gflags没有config cmake xff0c 所以在一些情况下需要手动编译 1 卸载gflags amp glog 只适用于通过apt安装的方式 span class t
  • 【算法】A* 寻路 可视化

    如下图 寻路图A 使用A 算法 xff0c 需要将地图抽象成一个个方块 xff0c 蓝色代表不可以动 墙 xff0c 黄色为起始点 xff0c 红色为目标点 其地图的二维坐标如图所示 xff0c 每一个单位为1米 A 的基本公式为 F n
  • 实验室新生成长指南[2.2.1] · 连接器

    欢迎进入 实验室新生成长指南 第二章 xff1a 硬件 本篇是 实验室新生成长指南 第二章第二节第一篇 xff1a 连接器 整个2 2节将帮助新手快速建立设计电路系统的一些基本知识储备 更多关于 实验室新生成长指南 的介绍 xff0c 请前
  • 走进音视频的世界——音视频的基本概念

    音视频通用的基本概念有码率 时长 xff0c 而不同音视频有不同的封装格式 编码协议 其中视频关键参数有分辨率 帧率 画质 旋转角度 像素格式 xff0c 而音频关键参数有采样率 声道数 声道布局 音质 采样数 采样位数 帧时长 接下来与大
  • 走进音视频的世界——新一代开源编解码器AV1

    AOMedia Video 1 xff08 AV1 xff09 是一种开源 免版税的编解码器 xff0c 最初设计用于Internet上的视频传输 它是由开放媒体联盟 xff08 AOMedia xff09 于VP9的继任者开发的 xff0
  • FFmpeg源码分析:avformat_find_stream_info分析码流信息

    FFmpeg在调用avformat open input 之后 xff0c 可能码流信息不够完整 xff0c 可以使用avformat find stream info 获取更多的码流信息 比如获取视频帧率 视频宽高 xff0c 重新计算最
  • Miracast投屏协议深入剖析

    Miracast由WiFi联盟制定 xff0c 以WiFi Direct IEEE802 11为无线传输标准 xff0c 允许手机向电视或其他接收设备进行无线投送视频 图片 和Miracast类似的投屏协议 xff0c 还有Airplay
  • c++:DFS与BFS详解

    DFS xff08 深度优先搜索 xff09 xff1a 从某个状态开始 xff0c 不断转移状态到无法转移为止 xff0c 然后退回到前一步 xff0c 继续转移到其他状态 xff0c 不断重复 xff0c 直至找到最终的解 总是从最开始
  • 一文掌握OpenGL的shader内置函数

    OpenGL ES有大量的GLSL内置函数 xff0c 包括 xff1a 三角函数 指数函数 通用函数 浮点函数 几何函数 矩阵函数 矢量关系函数 纹理函数 原子函数 图像函数 插值函数等 目录 一 三角函数 1 radians degre
  • 安全可靠的SRT实时传输协议

    Secure Reliable Transport SRT 是安全 可靠 低延时的多媒体实时传输协议 SRT协议使用AES进行数据加密 xff0c 运用FEC进行前向纠错 xff0c 并且有流量控制 拥塞控制 类似于QUIC协议 xff0c
  • android端使用openCV实现车牌检测

    现在 xff0c 汽车的踪影无处不在 xff0c 公路上疾驰 xff0c 大街边临停 xff0c 小区中停靠 xff0c 车库里停泊 管理监控如此庞大数量的汽车是个头疼的问题 精明的人们把目光放在车牌上 xff0c 因为车牌是汽车的 身份证
  • android端使用openCV与深度学习实现车牌识别

    车牌识别的应用场景随处可见 xff1a 高速公路上超速抓拍 小区门口关卡 车库入口关卡 xff0c 甚至出现在车载设备上 它的工作原理大致这样 xff1a 使用摄像头充当 眼睛 xff0c 使用openCV与深度学习充当 大脑 实时车牌识别
  • FFmpeg音频处理——音频混合、拼接、剪切、转码

    接触FFmpeg有一段时间了 xff0c 它是音视频开发的开源库 xff0c 几乎其他所有播放器 直播平台都基于FFmpeg进行二次开发 本篇文章来总结下采用FFmpeg进行音频处理 xff1a 音频混合 音频剪切 音频拼接与音频转码 采用
  • Android三种方式截取任意界面屏幕

    一 使用MediaProjectionManager Android5 0之后 xff0c 开放截取屏幕的API xff0c 也就是利用MediaProjectionManager创建VirtualDisplay xff0c 传入与Imag
  • ijkplayer基于rtsp直播延时的深度优化

    现在ijkPlayer是许多播放器 直播平台的首选 xff0c 相信很多开发者都接触过ijkPlayer xff0c 无论是Android工程师还是iOS工程师 我曾经在Github上的ijkPlayer开源项目上提问过 xff1a 视频流
  • C++ 程序编译过程

    前言 C语言的编译链接过程要把我们编写的一个c程序 xff08 源代码 xff09 转换成可以在硬件上运行的程序 xff08 可执行代码 xff09 xff0c 需要进行编译和链接 编译就是把文本形式源代码翻译为机器语言形式的目标文件的过程