Linux tcpdump命令详解

2023-05-16

简介

  • 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 
  • tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。
  • 它支持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。

实用命令实例

默认启动

  • 
    tcpdump  

普通情况下,直接启动tcpdump将监视第一个网络接口上所有流过的数据包。

监视指定网络接口的数据包

  • 
    tcpdump -i eth1  

如果不指定网卡,默认tcpdump只会监视第一个网络接口,一般是eth0,下面的例子都没有指定网络接口。 

监视指定主机的数据包

打印所有进入或离开sundown的数据包.


tcpdump host sundown  

也可以指定ip,例如截获所有210.27.48.1 的主机收到的和发出的所有的数据包


tcpdump host 210.27.48.1   

打印helios 与 hot 或者与 ace 之间通信的数据包


tcpdump host helios and \( hot or ace \)  

截获主机210.27.48.1 和主机210.27.48.2 或210.27.48.3的通信


tcpdump host 210.27.48.1 and \ (210.27.48.2 or 210.27.48.3 \)   

打印ace与任何其他主机之间通信的IP 数据包, 但不包括与helios之间的数据包.


tcpdump ip host ace and not helios  

如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包,使用命令:


tcpdump ip host 210.27.48.1 and ! 210.27.48.2  

截获主机hostname发送的所有数据


tcpdump -i eth0 src host hostname  

监视所有送到主机hostname的数据包


tcpdump -i eth0 dst host hostname  

 监视指定主机和端口的数据包

如果想要获取主机210.27.48.1接收或发出的telnet包,使用如下命令


tcpdump tcp port 23 and host 210.27.48.1  

对本机的udp 123 端口进行监视 123 为ntp的服务端口


tcpdump udp port 123   

监视指定网络的数据包

打印本地主机与Berkeley网络上的主机之间的所有通信数据包(nt: ucb-ether, 此处可理解为'Berkeley网络'的网络地址,此表达式最原始的含义可表达为: 打印网络地址为ucb-ether的所有数据包)


tcpdump net ucb-ether  

打印所有通过网关snup的ftp数据包(注意, 表达式被单引号括起来了, 这可以防止shell对其中的括号进行错误解析)


tcpdump 'gateway snup and (port ftp or ftp-data)'  

打印所有源地址或目标地址是本地主机的IP数据包

(如果本地网络通过网关连到了另一网络, 则另一网络并不能算作本地网络.(nt: 此句翻译曲折,需补充).localnet 实际使用时要真正替换成本地网络的名字)


tcpdump ip and not net localnet  

监视指定协议的数据包

打印TCP会话中的的开始和结束数据包, 并且数据包的源或目的不是本地网络上的主机.(nt: localnet, 实际使用时要真正替换成本地网络的名字))


tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'  

打印所有源或目的端口是80, 网络层协议为IPv4, 并且含有数据,而不是SYN,FIN以及ACK-only等不含数据的数据包.(ipv6的版本的表达式可做练习)


tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'  

(nt: 可理解为, ip[2:2]表示整个ip数据包的长度, (ip[0]&0xf)<<2)表示ip数据包包头的长度(ip[0]&0xf代表包中的IHL域, 而此域的单位为32bit, 要换算

成字节数需要乘以4, 即左移2. (tcp[12]&0xf0)>>4 表示tcp头的长度, 此域的单位也是32bit, 换算成比特数为 ((tcp[12]&0xf0) >> 4) << 2, 
即 ((tcp[12]&0xf0)>>2). ((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0 表示: 整个ip数据包的长度减去ip头的长度,再减去
tcp头的长度不为0, 这就意味着, ip数据包中确实是有数据.对于ipv6版本只需考虑ipv6头中的'Payload Length' 与 'tcp头的长度'的差值, 并且其中表达方式'ip[]'需换成'ip6[]'.)

打印长度超过576字节, 并且网关地址是snup的IP数据包


tcpdump 'gateway snup and ip[2:2] > 576'  

打印所有IP层广播或多播的数据包, 但不是物理以太网层的广播或多播数据报


tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'  

打印除'echo request'或者'echo reply'类型以外的ICMP数据包( 比如,需要打印所有非ping 程序产生的数据包时可用到此表达式 .
(nt: 'echo reuqest' 与 'echo reply' 这两种类型的ICMP数据包通常由ping程序产生))


tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'  

tcpdump 与wireshark

Wireshark(以前是ethereal)是Windows下非常简单易用的抓包工具。但在Linux下很难找到一个好用的图形化抓包工具。
还好有Tcpdump。我们可以用Tcpdump + Wireshark 的完美组合实现:在 Linux 里抓包,然后在Windows 里分析包。


tcpdump tcp -i eth1 -t -s 0 -c 100 and dst port ! 22 and src net 192.168.1.0/24 -w ./target.cap  

(1)tcp: ip icmp arp rarp 和 tcp、udp、icmp这些选项等都要放到第一个参数的位置,用来过滤数据报的类型
(2)-i eth1 : 只抓经过接口eth1的包
(3)-t : 不显示时间戳
(4)-s 0 : 抓取数据包时默认抓取长度为68字节。加上-S 0 后可以抓到完整的数据包
(5)-c 100 : 只抓取100个数据包
(6)dst port ! 22 : 不抓取目标端口是22的数据包
(7)src net 192.168.1.0/24 : 数据包的源网络地址为192.168.1.0/24
(8)-w ./target.cap : 保存成cap文件,方便用ethereal(即wireshark)分析

 

使用tcpdump抓取HTTP包


tcpdump  -XvvennSs 0 -i eth0 tcp[20:2]=0x4745 or tcp[20:2]=0x4854  

0x4745 为"GET"前两个字母"GE",0x4854 为"HTTP"前两个字母"HT"。

tcpdump 对截获的数据并没有进行彻底解码,数据包内的大部分内容是使用十六进制的形式直接打印输出的。显然这不利于分析网络故障,通常的解决办法是先使用带-w参数的tcpdump 截获数据并保存到文件中,然后再使用其他程序(如Wireshark)进行解码分析。当然也应该定义过滤规则,以避免捕获的数据包填满整个硬盘。

输出信息含义

首先我们注意一下,基本上tcpdump总的的输出格式为:系统时间 来源主机.端口 > 目标主机.端口 数据包参数

tcpdump 的输出格式与协议有关.以下简要描述了大部分常用的格式及相关例子.

链路层头

对于FDDI网络, '-e' 使tcpdump打印出指定数据包的'frame control' 域, 源和目的地址, 以及包的长度.(frame control域
控制对包中其他域的解析). 一般的包(比如那些IP datagrams)都是带有'async'(异步标志)的数据包,并且有取值0到7的优先级;
比如 'async4'就代表此包为异步数据包,并且优先级别为4. 通常认为,这些包们会内含一个 LLC包(逻辑链路控制包); 这时,如果此包
不是一个ISO datagram或所谓的SNAP包,其LLC头部将会被打印(nt:应该是指此包内含的 LLC包的包头).

对于Token Ring网络(令牌环网络), '-e' 使tcpdump打印出指定数据包的'frame control'和'access control'域, 以及源和目的地址,
外加包的长度. 与FDDI网络类似, 此数据包通常内含LLC数据包. 不管 是否有'-e'选项.对于此网络上的'source-routed'类型数据包(nt:
意译为:源地址被追踪的数据包,具体含义未知,需补充), 其包的源路由信息总会被打印.


对于802.11网络(WLAN,即wireless local area network), '-e' 使tcpdump打印出指定数据包的'frame control域,
包头中包含的所有地址, 以及包的长度.与FDDI网络类似, 此数据包通常内含LLC数据包.

(注意: 以下的描述会假设你熟悉SLIP压缩算法 (nt:SLIP为Serial Line Internet Protocol.), 这个算法可以在
RFC-1144中找到相关的蛛丝马迹.)

对于SLIP网络(nt:SLIP links, 可理解为一个网络, 即通过串行线路建立的连接, 而一个简单的连接也可看成一个网络),
数据包的'direction indicator'('方向指示标志')("I"表示入, "O"表示出), 类型以及压缩信息将会被打印. 包类型会被首先打印.

类型分为ip, utcp以及ctcp(nt:未知, 需补充). 对于ip包,连接信息将不被打印(nt:SLIP连接上,ip包的连接信息可能无用或没有定义.
reconfirm).对于TCP数据包, 连接标识紧接着类型表示被打印. 如果此包被压缩, 其被编码过的头部将被打印.
此时对于特殊的压缩包,会如下显示:
*S+n 或者 *SA+n, 其中n代表包的(顺序号或(顺序号和应答号))增加或减少的数目(nt | rt:S,SA拗口, 需再译).
对于非特殊的压缩包,0个或更多的'改变'将会被打印.'改变'被打印时格式如下:
'标志'+/-/=n 包数据的长度 压缩的头部长度.
其中'标志'可以取以下值:
U(代表紧急指针), W(指缓冲窗口), A(应答), S(序列号), I(包ID),而增量表达'=n'表示被赋予新的值, +/-表示增加或减少.

比如, 以下显示了对一个外发压缩TCP数据包的打印, 这个数据包隐含一个连接标识(connection identifier); 应答号增加了6,
顺序号增加了49, 包ID号增加了6; 包数据长度为3字节(octect), 压缩头部为6字节.(nt:如此看来这应该不是一个特殊的压缩数据包).

ARP/RARP 数据包

tcpdump对Arp/rarp包的输出信息中会包含请求类型及该请求对应的参数. 显示格式简洁明了. 以下是从主机rtsg到主机csam的'rlogin'
(远程登录)过程开始阶段的数据包样例:
arp who-has csam tell rtsg
arp reply csam is-at CSAM
第一行表示:rtsg发送了一个arp数据包(nt:向全网段发送,arp数据包)以询问csam的以太网地址
Csam(nt:可从下文看出来, 是Csam)以她自己的以太网地址做了回应(在这个例子中, 以太网地址以大写的名字标识, 而internet
地址(即ip地址)以全部的小写名字标识).

如果使用tcpdump -n, 可以清晰看到以太网以及ip地址而不是名字标识:
arp who-has 128.3.254.6 tell 128.3.254.68
arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

如果我们使用tcpdump -e, 则可以清晰的看到第一个数据包是全网广播的, 而第二个数据包是点对点的:
RTSG Broadcast 0806 64: arp who-has csam tell rtsg
CSAM RTSG 0806 64: arp reply csam is-at CSAM
第一个数据包表明:以arp包的源以太地址是RTSG, 目标地址是全以太网段, type域的值为16进制0806(表示ETHER_ARP(nt:arp包的类型标识)),
包的总长度为64字节.

TCP 数据包

(注意:以下将会假定你对 RFC-793所描述的TCP熟悉. 如果不熟, 以下描述以及tcpdump程序可能对你帮助不大.(nt:警告可忽略,
只需继续看, 不熟悉的地方可回头再看.).


通常tcpdump对tcp数据包的显示格式如下:
src > dst: flags data-seqno ack window urgent options

src 和 dst 是源和目的IP地址以及相应的端口. flags 标志由S(SYN), F(FIN), P(PUSH, R(RST),
W(ECN CWT(nt | rep:未知, 需补充))或者 E(ECN-Echo(nt | rep:未知, 需补充))组成,
单独一个'.'表示没有flags标识. 数据段顺序号(Data-seqno)描述了此包中数据所对应序列号空间中的一个位置(nt:整个数据被分段,
每段有一个顺序号, 所有的顺序号构成一个序列号空间)(可参考以下例子). Ack 描述的是同一个连接,同一个方向,下一个本端应该接收的
(对方应该发送的)数据片段的顺序号. Window是本端可用的数据接收缓冲区的大小(也是对方发送数据时需根据这个大小来组织数据).
Urg(urgent) 表示数据包中有紧急的数据. options 描述了tcp的一些选项, 这些选项都用尖括号来表示(如 <mss 1024>).

src, dst 和 flags 这三个域总是会被显示. 其他域的显示与否依赖于tcp协议头里的信息.

这是一个从trsg到csam的一个rlogin应用登录的开始阶段.
rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>
csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>
rtsg.1023 > csam.login: . ack 1 win 4096
rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096
csam.login > rtsg.1023: . ack 2 win 4096
rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096
csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077
csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1
csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
第一行表示有一个数据包从rtsg主机的tcp端口1023发送到了csam主机的tcp端口login上(nt:udp协议的端口和tcp协议的端
口是分别的两个空间, 虽然取值范围一致). S表示设置了SYN标志. 包的顺序号是768512, 并且没有包含数据.(表示格式
为:'first:last(nbytes)', 其含义是'此包中数据的顺序号从first开始直到last结束,不包括last. 并且总共包含nbytes的
用户数据'.) 没有捎带应答(nt:从下文来看,第二行才是有捎带应答的数据包), 可用的接受窗口的大小为4096bytes, 并且请求端(rtsg)
的最大可接受的数据段大小是1024字节(nt:这个信息作为请求发向应答端csam, 以便双方进一步的协商).

Csam 向rtsg 回复了基本相同的SYN数据包, 其区别只是多了一个' piggy-backed ack'(nt:捎带回的ack应答, 针对rtsg的SYN数据包).

rtsg 同样针对csam的SYN数据包回复了一ACK数据包作为应答. '.'的含义就是此包中没有标志被设置. 由于此应答包中不含有数据, 所以
包中也没有数据段序列号. 提醒! 此ACK数据包的顺序号只是一个小整数1. 有如下解释:tcpdump对于一个tcp连接上的会话, 只打印会话两端的
初始数据包的序列号,其后相应数据包只打印出与初始包序列号的差异.即初始序列号之后的序列号, 可被看作此会话上当前所传数据片段在整个
要传输的数据中的'相对字节'位置(nt:双方的第一个位置都是1, 即'相对字节'的开始编号). '-S'将覆盖这个功能, 
使数据包的原始顺序号被打印出来.

第六行的含义为:rtsg 向 csam发送了19字节的数据(字节的编号为2到20,传送方向为rtsg到csam). 包中设置了PUSH标志. 在第7行,
csam 喊到, 她已经从rtsg中收到了21以下的字节, 但不包括21编号的字节. 这些字节存放在csam的socket的接收缓冲中, 相应地,
csam的接收缓冲窗口大小会减少19字节(nt:可以从第5行和第7行win属性值的变化看出来). csam在第7行这个包中也向rtsg发送了一个
字节. 在第8行和第9行, csam 继续向rtsg 分别发送了两个只包含一个字节的数据包, 并且这个数据包带PUSH标志.

如果所抓到的tcp包(nt:即这里的snapshot)太小了,以至tcpdump无法完整得到其头部数据, 这时, tcpdump会尽量解析这个不完整的头,
并把剩下不能解析的部分显示为'[|tcp]'. 如果头部含有虚假的属性信息(比如其长度属性其实比头部实际长度长或短), tcpdump会为该头部
显示'[bad opt]'. 如果头部的长度告诉我们某些选项(nt | rt:从下文来看, 指tcp包的头部中针对ip包的一些选项, 回头再翻)会在此包中,
而真正的IP(数据包的长度又不够容纳这些选项, tcpdump会显示'[bad hdr length]'.


抓取带有特殊标志的的TCP包(如SYN-ACK标志, URG-ACK标志等).

在TCP的头部中, 有8比特(bit)用作控制位区域, 其取值为:
CWR | ECE | URG | ACK | PSH | RST | SYN | FIN
(nt | rt:从表达方式上可推断:这8个位是用或的方式来组合的, 可回头再翻)

现假设我们想要监控建立一个TCP连接整个过程中所产生的数据包. 可回忆如下:TCP使用3次握手协议来建立一个新的连接; 其与此三次握手
连接顺序对应,并带有相应TCP控制标志的数据包如下:
1) 连接发起方(nt:Caller)发送SYN标志的数据包
2) 接收方(nt:Recipient)用带有SYN和ACK标志的数据包进行回应
3) 发起方收到接收方回应后再发送带有ACK标志的数据包进行回应


0 15 31
-----------------------------------------------------------------
| source port | destination port |
-----------------------------------------------------------------
| sequence number |
-----------------------------------------------------------------
| acknowledgment number |
-----------------------------------------------------------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
-----------------------------------------------------------------
| TCP checksum | urgent pointer |
-----------------------------------------------------------------

一个TCP头部,在不包含选项数据的情况下通常占用20个字节(nt | rt:options 理解为选项数据,需回译). 第一行包含0到3编号的字节,
第二行包含编号4-7的字节.

如果编号从0开始算, TCP控制标志位于13字节(nt:第四行左半部分).

0 7| 15| 23| 31
----------------|---------------|---------------|----------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
----------------|---------------|---------------|----------------
| | 13th octet | | |

让我们仔细看看编号13的字节:

| |
|---------------|
|C|E|U|A|P|R|S|F|
|---------------|
|7 5 3 0|


这里有我们感兴趣的控制标志位. 从右往左这些位被依次编号为0到7, 从而 PSH位在3号, 而URG位在5号.

提醒一下自己, 我们只是要得到包含SYN标志的数据包. 让我们看看在一个包的包头中, 如果SYN位被设置, 到底
在13号字节发生了什么:

|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 0 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|


在控制段的数据中, 只有比特1(bit number 1)被置位.

假设编号为13的字节是一个8位的无符号字符型,并且按照网络字节号排序(nt:对于一个字节来说,网络字节序等同于主机字节序), 其二进制值
如下所示:
00000010

并且其10进制值为:

0*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 2(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 ... 0挪到了下面来表达)

接近目标了, 因为我们已经知道, 如果数据包头部中的SYN被置位, 那么头部中的第13个字节的值为2(nt: 按照网络序, 即大头方式, 最重要的字节
在前面(在前面,即该字节实际内存地址比较小, 最重要的字节,指数学表示中数的高位, 如356中的3) ).

表达为tcpdump能理解的关系式就是:
tcp[13] 2

从而我们可以把此关系式当作tcpdump的过滤条件, 目标就是监控只含有SYN标志的数据包:
tcpdump -i xl0 tcp[13] 2 (nt: xl0 指网络接口, 如eth0)

这个表达式是说"让TCP数据包的第13个字节拥有值2吧", 这也是我们想要的结果.


现在, 假设我们需要抓取带SYN标志的数据包, 而忽略它是否包含其他标志.(nt:只要带SYN就是我们想要的). 让我们来看看当一个含有
SYN-ACK的数据包(nt:SYN 和 ACK 标志都有), 来到时发生了什么:
|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 1 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|

13号字节的1号和4号位被置位, 其二进制的值为:
00010010

转换成十进制就是:

0*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2 = 18(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 ... 0挪到了下面来表达)

现在, 却不能只用'tcp[13] 18'作为tcpdump的过滤表达式, 因为这将导致只选择含有SYN-ACK标志的数据包, 其他的都被丢弃.
提醒一下自己, 我们的目标是: 只要包的SYN标志被设置就行, 其他的标志我们不理会.

为了达到我们的目标, 我们需要把13号字节的二进制值与其他的一个数做AND操作(nt:逻辑与)来得到SYN比特位的值. 目标是:只要SYN 被设置
就行, 于是我们就把她与上13号字节的SYN值(nt: 00000010).

00010010 SYN-ACK 00000010 SYN
AND 00000010 (we want SYN) AND 00000010 (we want SYN)
-------- --------
= 00000010 = 00000010

我们可以发现, 不管包的ACK或其他标志是否被设置, 以上的AND操作都会给我们相同的值, 其10进制表达就是2(2进制表达就是00000010).
从而我们知道, 对于带有SYN标志的数据包, 以下的表达式的结果总是真(true):

( ( value of octet 13 ) AND ( 2 ) ) ( 2 ) (nt: value of octet 13, 即13号字节的值)

灵感随之而来, 我们于是得到了如下的tcpdump 的过滤表达式
tcpdump -i xl0 'tcp[13] & 2 2'

注意, 单引号或反斜杆(nt: 这里用的是单引号)不能省略, 这可以防止shell对&的解释或替换.


UDP 数据包

UDP 数据包的显示格式,可通过rwho这个具体应用所产生的数据包来说明:
actinide.who > broadcast.who: udp 84

其含义为:actinide主机上的端口who向broadcast主机上的端口who发送了一个udp数据包(nt: actinide和broadcast都是指Internet地址).
这个数据包承载的用户数据为84个字节.

一些UDP服务可从数据包的源或目的端口来识别,也可从所显示的更高层协议信息来识别. 比如, Domain Name service requests(DNS 请求,
在RFC-1034/1035中), 和Sun RPC calls to NFS(对NFS服务器所发起的远程调用(nt: 即Sun RPC),在RFC-1050中有对远程调用的描述).

UDP 名称服务请求

(注意:以下的描述假设你对Domain Service protoco(nt:在RFC-103中有所描述), 否则你会发现以下描述就是天书(nt:希腊文天书,
不必理会, 吓吓你的, 接着看就行))

名称服务请求有如下的格式:
src > dst: id op? flags qtype qclass name (len)
(nt: 从下文来看, 格式应该是src > dst: id op flags qtype qclass? name (len))
比如有一个实际显示为:
h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

主机h2opolo 向helios 上运行的名称服务器查询ucbvax.berkeley.edu 的地址记录(nt: qtype等于A). 此查询本身的id号为'3'. 符号
'+'意味着递归查询标志被设置(nt: dns服务器可向更高层dns服务器查询本服务器不包含的地址记录). 这个最终通过IP包发送的查询请求
数据长度为37字节, 其中不包括UDP和IP协议的头数据. 因为此查询操作为默认值(nt | rt: normal one的理解), op字段被省略.
如果op字段没被省略, 会被显示在'3' 和'+'之间. 同样, qclass也是默认值, C_IN, 从而也没被显示, 如果没被忽略, 她会被显示在'A'之后.

异常检查会在方括中显示出附加的域: 如果一个查询同时包含一个回应(nt: 可理解为, 对之前其他一个请求的回应), 并且此回应包含权威或附加记录段, 
ancount, nscout, arcount(nt: 具体字段含义需补充) 将被显示为'[na]', '[nn]', '[nau]', 其中n代表合适的计数. 如果包中以下
回应位(比如AA位, RA位, rcode位), 或者字节2或3中任何一个'必须为0'的位被置位(nt: 设置为1), '[b2&3]=x' 将被显示, 其中x表示
头部字节2与字节3进行与操作后的值.

UDP 名称服务应答

对名称服务应答的数据包,tcpdump会有如下的显示格式
src > dst: id op rcode flags a/n/au type class data (len)
比如具体显示如下:
helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

第一行表示: helios 对h2opolo 所发送的3号查询请求回应了3条回答记录(nt | rt: answer records), 3条名称服务器记录,
以及7条附加的记录. 第一个回答记录(nt: 3个回答记录中的第一个)类型为A(nt: 表示地址), 其数据为internet地址128.32.137.3.
此回应UDP数据包, 包含273字节的数据(不包含UPD和IP的头部数据). op字段和rcode字段被忽略(nt: op的实际值为Query, rcode, 即
response code的实际值为NoError), 同样被忽略的字段还有class 字段(nt | rt: 其值为C_IN, 这也是A类型记录默认取值)

第二行表示: helios 对h2opolo 所发送的2号查询请求做了回应. 回应中, rcode编码为NXDomain(nt: 表示不存在的域)), 没有回答记录,
但包含一个名称服务器记录, 不包含权威服务器记录(nt | ck: 从上文来看, 此处的authority records 就是上文中对应的additional
records). '*'表示权威服务器回答标志被设置(nt: 从而additional records就表示的是authority records).
由于没有回答记录, type, class, data字段都被忽略.

flag字段还有可能出现其他一些字符, 比如'-'(nt: 表示可递归地查询, 即RA 标志没有被设置), '|'(nt: 表示被截断的消息, 即TC 标志
被置位). 如果应答(nt | ct: 可理解为, 包含名称服务应答的UDP数据包, tcpdump知道这类数据包该怎样解析其数据)的'question'段一个条
目(entry)都不包含(nt: 每个条目的含义, 需补充),'[nq]' 会被打印出来.

要注意的是:名称服务器的请求和应答数据量比较大, 而默认的68字节的抓取长度(nt: snaplen, 可理解为tcpdump的一个设置选项)可能不足以抓取
数据包的全部内容. 如果你真的需要仔细查看名称服务器的负载, 可以通过tcpdump 的-s 选项来扩大snaplen值.

Linux tcpdump命令详解 - ggjucheng - 博客园

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Linux tcpdump命令详解 的相关文章

  • 车载以太网SOME/IP概述

    车载以太网SOME IP概述 汽车测试技术 汽车测试网 车载以太网SOMEIP概述 xff08 二 xff09 汽车技术 汽车测试网 The error handling of SOME IP is shown as an example
  • 基于模型的嵌入式软件开发

    对工具的分类和资质审核 通过认证的方式发放证书 应对复杂系统时 xff0c 软件开发人员的工作效率在降低 解决复杂软件开发效率低下的路径 xff1a 模块化开发 xff08 一个复杂的系统包含很多模块 xff0c 每个模块都比较简单 xff
  • ARM Cortex-A系列处理器性能分类比较

    在如今这个电子产品泛滥的年代 xff0c 仅仅靠品牌或是外观已经不足以辨别产品的优劣 xff0c 其内置的处理器自然也就成为了分辨产品是否高端的标准之一 那么我们今天就不妨好好了解一下近几年来电子产品中较为主流的RAM处理器 在这之前让我们
  • linux 前后台进程详解

    前后台进程切换 nice 进程优先级 free 实战 screen 后台执行命令 linux 前台进程与后台进程的区别 xff1a 进程的前台与后台运行 跟系统任务相关的几个命令 xff1a 注 xff1a 实际生产环境中 xff0c 都是
  • 编写项目工作说明书(SOW)

    工作说明书 SOW 是一个项目必须提供的工作指南 SOW是一个关键的管理工具 xff0c 不管是用来指导卖方或者承包商的工作 xff0c 或者是用来指导他们的内部工作 xff0c SOW必须包括所有所期望工作的描述 这些描述不需要在一个很详
  • i++在两个线程执行100次,最终的结果是

    i 43 43 语句只需要执行一条指令 但当有多个线程时 xff0c 并不能保证多个线程i 43 43 xff0c 操作同一个i 因为还有寄存器的因素 xff0c 多个cpu对应多个寄存器 每次要先把i从内存复制到寄存器 xff0c 然后
  • 一万字解读CP AUTOSAR

    导读 xff1a AUTOSAR旨在改善汽车电子系统软件的更新与交换 xff0c 同时更方便有效地管理日趋复杂的汽车电子软件系统 AUTOSAR规范的运用使得不同结构的电子控制单元的接口特征标准化 xff0c 应用软件具备更好的可扩展性以及
  • 关于SOME/IP的理解

    1 总体说明 如上图所示为标准的网络七层架构 xff0c SOME IP Scalable service Oriented MiddlewarE over IP xff0c 即 运行于IP之上的可伸缩的面向服务的中间件 他在系统中其实就是
  • 系统性思维是什么?

    像是魔方一个 xff0c 当你遇到一个问题时 xff0c 有系统性思维的人会告诉你为什么你会有这个问题 xff0c 这个问题的前因后果是什么 xff0c 怎么避免类似问题 xff0c 正确的方法是什么 xff0c 其他可能得错误路径是什么
  • 如何从普通员工成为一个领导者

    how to become a company leader from one employee 要想成为一个领导或者领导 xff08 影响别人 xff09 首先需要基本的领导基本功 这里分享一些我的心得体会 自我反省 xff1a 要不断自
  • 读书笔记1

    第七期主题词 xff1a 告别 1 我们最终都要远行 xff0c 最终都要与稚嫩的自己告别 xff0c 告别是通向成长的苦行之路 海子 2 我和谁都不争 xff0c 和谁争我都不屑 xff0c 我的双手烤着生命之火取暖 xff0c 火萎了
  • 武志红《为何爱会伤人》

    最近读武志红 为何爱会伤人 xff0c 让我们从另一个角度去理解爱情 xff0c 本书从全新的视角解读爱情 xff0c 提出从 认识自己内心 的角度来看待爱情 xff0c 什么是迷恋 xff1f 什么是一见钟情 xff1f 如何获得真爱等问
  • 关于如何去寻找自己的另一半和我的爱情观

    用这个题目 xff0c 我自己都没想到 xff0c 因为目前我还是单身 xff0c 虽然谈过几次恋爱 xff0c 但最后都成了白月光 下面我给出了自己的反思 xff0c 也找了我的领导谈心 xff0c 也看了一些书 xff0c 想找到为什么
  • 一篇文章完全讲解C语言指针

    指针对于C来说太重要 然而 xff0c 想要全面理解指针 xff0c 除了要对C语言有熟练的掌握外 xff0c 还要有计算机硬件以及操作系统等方方面面的基本知识 所以本文尽可能的通过一篇文章完全讲解指针 为什么需要指针 xff1f 指针解决
  • MySQL定时备份

    MySQL定时备份实例 xff1a 每周一晚上3 00 xff0c 备份数据库服务器上webdb库的所有数据到系统的 mysqlbak目录中 xff0c 使用系统日期做备份文件名 xff01 span class token operato
  • 一篇文章完全讲解C语言指针

    https mp weixin qq com s biz 61 MzU3NDU5NDczMw 61 61 amp mid 61 2247504309 amp idx 61 5 amp sn 61 5421ee86fb1be92b43d99f
  • 读懂Adaptive Autosar架构-基础应用篇

    对于Adaptive AUTOSAR xff0c 咱们经常会看到这句话 xff1a Write once Adopt everywhere 但实际上理想很丰满 xff0c 现实很骨感 毕竟Classic Platform xff08 后面简
  • 软件架构的定义

    一 软件架构的定义 我们先讨论一下什么是软件架构 xff1f 对于软件架构并没有一个标准的定义 xff0c 但是你和软件工程师谈到架构的时候 xff0c 他们会知道这些都会是架构的内容 是不是要分层 xff0c 如何处理事件 xff0c 如
  • 一文了解V2X技术栈及其产业链

    C V2X会给未来出行交通带来怎样的改变 xff1f 会在哪些场景下发挥作用 xff1f 这条产业链里面的公司又是哪些 xff1f 大厂们在V2X上的投入又是如何呢 xff1f 本文可以给你一个答案 1 为什么需要V2X 随着C V2X及5
  • 精力管理分享

    你是否长时间工作却没有时间休息 是否总是感到压力很大 xff0c 时间不够用 xff1f 是否经常觉得很疲惫 xff0c 怎么调整都找不到状态 xff1f 然而 xff0c 不论是工作还是生活 xff0c 我们每个人都需要进行自我能量的调节

随机推荐

  • 目标管理

    业务能力很突出 xff0c 管理能力跟不上 xff0c 怎么办 xff1f 这节课帮你补全管理必修模块 xff0c 掌握全面的管理视角 学了很多管理手段 xff0c 总是用不上怎么办 xff1f 用工具统一管理语言 xff0c 拿来就能用
  • 深入浅出理解SOME/IP

    详解SOME IP协议文档 1 知乎 知乎 xff0c 中文互联网高质量的问答社区和创作者聚集的原创内容平台 xff0c 于 2011 年 1 月正式上线 xff0c 以 让人们更好地分享知识 经验和见解 xff0c 找到自己的解答 为品牌
  • SOME/IP-SD 深入浅出

    文章中 xff0c 我们了解了一条完整的SOME IP报文应该长什么样子 xff0c 但这显然是不够的 xff0c 至少还有以下这几个问题并没有得到明确的解决 xff1a Client如何发现服务 当服务不可用时 xff0c 如何通知Cli
  • Segmentation Fault错误原因总结

    一 什么是 Segmentation fault in Linux 所谓的段错误就是指访问的内存超过了系统所给这个程序的内存空间 xff0c 通常这个值是由gdtr来保存的 xff0c 他是一个48位的寄存器 xff0c 其中的32位是保存
  • 漫谈QNX(架构/进程,线程,同步,进程间通信IPC)

    1 架构 说起Blackberry的QNX操作系统 想必大家都听说过 xff0c 但到底为什么QNX能如此有名 xff1f 难道微软的Windows和Linux都不能与之抗衡 xff1f 美国NASA的太空接驳飞船也使用QNX操作系统 QN
  • Linux系统安装后需要做什么?

    安装完linux系统之后需要做的事情 以centos7为例 xff1a 1 用root用户登录 2 tab键补全安装包 yum span class token operator span y install bash span class
  • ETAS Adaptive AUTOSAR 自适应平台示例视频教程

    ETAS AP AUTOSAR自适应平台示例视频教程 本系列文章旨在提供一个详细的操作指南 xff0c 以构建ETAS AP AUTOSAR自适应平台的示例 实践练习的目标是加强AUTOSAR自适应平台中的理论概念 xff0c 并更好地理解
  • 什么是微内核,看这一篇就够了

    微内核是将服务转移到进程上的一种内核模式 宏内核是一种传统的内核结构 xff0c 它将进程管理 xff0c 内存管理等各项服务功能都放到内核中去 xff0c 通常用在通用式的内核上 xff0c 如unix xff0c linux等 两个系统
  • AUTOSAR的E2E通信安全

    AUTOSAR标准的安全通信为支持功能安全 xff0c AUTOSAR标准结合ISO 26262功能安全标准 xff0c 在基础软件层从安全执行 安全通信以及安全内建测试三个方面做出了规范 xff0c 并规范 AUTOSAR标准的安全通信
  • bridged networking(桥接模式)和network address translation(NAT模式)

    在NAT模式下 xff1a 王五的主机里面的虚拟机有一个虚拟的网卡有一个IP地址192 168 100 88 xff0c 可以在内部生成一个虚拟的地址192 168 100 xff19 xff19 与之通信 xff0c 然后通过代理利用主机
  • Linux 目录结构

  • Adaptive AUTOSAR 简介 (2021版)

    目录 1 Adaptive AUTOSAR 简介 Adaptive平台 一种新的 AUTOSAR 1 1 Adaptive的案例 1 2 经典平台与适应性平台的比较 1 3 单一系统 1 4 架构 逻辑架构 1 5 软件架构 本文图片来源
  • 从Adaptive AUTOSAR的角度看SOA

    前言 身处汽车行业的我们深知 xff0c 新技术的应用或者新概念的提出 xff0c 一定是事出有因的 通常是为了抢夺新技术高地 xff0c 让汽车更好地满足未来的需求 那么 xff0c 汽车电子电气架构领域掀起的这股SOA热潮是由什么导致的
  • 什么是BSP?理解LINUX BSP

    BSP 可支持操作系统更好地运行于硬件主板 BSP xff08 Board Support Package xff09 指板级支持包 对于一般的嵌入式系统 xff0c 硬件部分需要嵌入式硬件工程师设计硬件电路 xff0c 而新出厂的电路板需
  • c++11 std::move() 的使用

    std move函数可以以非常简单的方式将左值引用转换为右值引用 xff08 左值 左值引用 右值 右值引用 参见 xff1a http www cnblogs com SZxiaochun p 8017475 html xff09 通过s
  • Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征

    本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20 11 版本 本文从AUTOSAR EXP PlatformDesign pdf开始 xff0c 一边学习 xff0c 一边顺带着翻译一下 尽力而为 x
  • MySQL导入数据(命令行、脚本方式)

    docker安装MySQL并导入数据 安装步骤省略 xff0c 详细可参考百度上文档 一 命令方式 1 把数据传进服务器中 dfc span class token annotation punctuation 64 BBC span sp
  • Linux 终端快捷键

    Linux 终端快捷键 你可能会有这样的疑问 xff1a 对于有些快捷键 xff0c 明明有等效的 一个按键就能搞定的操作 xff0c 为什么非要舍近求远 用两个组合键来实现 xff1f 当对键盘 终端命令熟练到一定程度之后 xff0c 你
  • Adaptive AUTOSAR----Adaptive studio

    Adaptive studio Adaptive Studio 是包含在 RTA VRTE SK 中的 AUTOSAR 编辑器 Adaptive studio 通过高级抽象支持所有 adaptives autosar arxml 元素的配置
  • Linux tcpdump命令详解

    简介 用简单的话来定义tcpdump xff0c 就是 xff1a dump the traffic on a network xff0c 根据使用者的定义对网络上的数据包进行截获的包分析工具 tcpdump可以将网络中传送的数据包的 头