MPC与LQR的详细对比分析

2023-05-16

从以下几个方面进行阐述:
一,研究对象:是否线性
二,状态方程:离散化
三,目标函数:误差和控制量的极小值
四,工作时域:预测时域,控制时域,滚动优化,求解一次
五,求解方法:QP求解器,变分法求解黎卡提方程
六,LQR和MPC的优缺点:滚动优化,求解时域,实时性,算力,工程常用方法

一, 研究对象:是否线性

MPC:线性和非线性系统均可
LQR:线性系统
非线性系统 在这里插入图片描述
通过
泰勒展开的方法
进行近似离散化为线性系统:
在这里插入图片描述

其中x 为状态的误差, u为控制量

二, 状态方程:离散化

**MPC:**1,对非线性的状态方程进行线性化。2,对线性方程进行离散化
**LQR:**对线性系统就行离散化
连续的线性系统: 在这里插入图片描述

离散化:通过前向欧拉方法进行离散化。
在这里插入图片描述

整理后得:
在这里插入图片描述
为方便描述将离散后的方程记为:
在这里插入图片描述

三, 目标函数:求误差和控制量极小值

在这里插入图片描述
LQR目标函数一个是积分,MPC目标函数一个是累计和,本质都是对代价的累计
当系统对终端状态要求极为严格时,目标函数会加一项终端代价函数,一般情况下该项省略。终端代码为:
在这里插入图片描述在这里插入图片描述

四, 求解方法:QP求解器工具,变分法求黎卡提方程

**MPC:**转化为二次规划问题,利用求解器进行求解,生成控制序列 。
**LQR:**采用变分法,通过求解黎卡提方程进行逼近,最终获取控制序列 。

五, 工作时域:预测时域,控制时域,滚动优化,求解一次

在这里插入图片描述
MPC:是求解预测时间段Np内的控制序列 ,并在下个周期后进行滚动优化,每次只需控制序列的第一个值作为控制的输入。为了提高速度,可只计算控制时间段Nc 内的控制序列时间段(Np-Nc)内的控制量均取Nc-1处的值即可,因为每次只取第一个控制量作为输入即可。
**LQR:**求解预测时间段内的控制序列 ,只求解一次,每个周期下取对应的控制量即可,而不考虑之前周期下实际与规划的误差。

六,LQR和MPC的优缺点:滚动优化,求解时域,实时性,工程常用的方法

LQR缺点:
1,LQR不滚动优化,预测时间段内的控制序列只求解一次,没有考虑实际与规划的误差。
2,LQR求解整个预测时域内的控制序列,而MPC可在更小的时间窗口中求解优化问题,获得次优解,可大大提升求解速度。
3,无约束,假设对控制量无约束。
**MPC缺点:**计算量大,实时性差,对于算力要求高,硬件成本较高,
但两者控制效果相差不大,故工程上横向控制常使用LQR。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

MPC与LQR的详细对比分析 的相关文章

  • mpc模型预测控制原理详解

    mpc模型预测控制原理详解 前言mpc算法步骤mpc算法推导 前言 本文是对mpc模型预测控制学习的记录 xff0c 主要参照了DR CAN老师的视频进行学习 视频专栏链接 xff1a DR CAN老师mpc视频专栏 在这篇博客中博主也针对
  • Apollo代码学习(七)—MPC与LQR比较 (百度Apollo中用到了PID、MPC和LQR三种控制器)

    摘自 xff1a https blog csdn net u013914471 article details 84324754 Apollo代码学习 七 MPC与LQR比较 follow轻尘 2018 11 29 17 32 56 179
  • 基于LQR的一阶倒立摆控制仿真

    1 LQR简介 LQR linear quadratic regulator 即线性二次型调节器 xff0c 其对象是现代理论中以状态空间形式给出的线性系统 LQR最优设计是指设计出的状态反馈控制器 K要使二次型目标函数J 取最小值 而 K
  • MPC,PID,LQR,DDP算法

    算法原理 xff1a
  • 无人驾驶-控制-LQR(运动学)

    无人驾驶 控制 LQR xff08 运动学 xff09 一 车辆建模 二 参考轨迹 利用泰勒展开 xff0c 进行线性化 xff1a 离散化处理 对离散后的式子进行处理 xff0c 得到X k 43 1 的表达式 综上 xff1a 由于系统
  • LQR控制算法的浅析

    目录 前言 一 知识点补充 1 拉格朗日乘子法 2 积分中值定理 3 向前欧拉法 xff0c 向后欧拉法 xff0c 中点欧拉法 4 向量的导数 5 矩阵求逆引理 记住就好 xff0c 推导见链接 二 连续时间下的LQR推导 1 系统状态方
  • 车辆控制知识总结(一):LQR算法

    目录 1 LQR简介 2 现代控制理论基础 2 1 状态空间描述 2 2 线性定常系统的状态空间描述框图 2 3 线性系统连续系统的反馈控制 2 31 全状态反馈控制器 3 LQR设计控制器的方法 3 1 什么是二次型 3 3 连续时间下的
  • MPC控制笔记(一)

    转自 我的博客 笔记参考1 xff1a Understanding Model Predictive Control Youtube 带自动生成字幕 笔记参考2 xff1a Understanding Model Predictive Co
  • LQR控制算法推导以及简单分析

    首先 xff0c 这篇文章是看了几个大神的博客后 xff0c 自己抄录以及整理的内容 xff0c 其中有些自己的想法 xff0c 但是原理部分基本都是学习大神们的 xff0c 在此先说明一下 1 全状态反馈控制系统 在介绍LQR之前 xff
  • MPC(模型预测控制)控制小车沿轨迹移动——C++实现

    任务说明 要求如下图所示 xff0c 给定一条轨迹 xff0c 要求控制小车沿这条轨迹移动 xff0c 同时可以适用于系统带有延时的情况 注意 xff0c 本篇文章只给出部分C 43 43 代码参考 主要流程 首先用运动学自行车模型 xff
  • MPC模型预测控制

    这篇主要讲一下模型预测控制 xff0c 如果对PID控制了解的同学 xff0c 那效果更好 如果不了解PID控制 xff0c 还是熟悉下比较好 模型预测控制 xff0c 顾名思义 xff0c 基于模型 xff0c 预测未来 xff0c 进行
  • MPC自学资料总结

    1 书籍 xff1a 无人驾驶车辆模型预测控制 2 视频 xff1a https ww2 mathworks cn videos understanding model predictive control part 1 why use m
  • Apollo代码学习(七)—MPC与LQR比较

    Apollo代码学习 MPC与LQR比较 前言研究对象状态方程工作时域目标函数求解方法 前言 Apollo中用到了PID MPC和LQR三种控制器 xff0c 其中 xff0c MPC和LQR控制器在状态方程的形式 状态变量的形式 目标函数
  • 百度Apollo 2.0 车辆控制算法之LQR控制算法解读

    百度Apollo 2 0 车辆控制算法之LQR控制算法解读 Apollo 中横向控制的LQR控制算法在Latcontroller cc 中实现 根据车辆的二自由度动力学模型 1 根据魔术公式在小角度偏角的情况下有 轮胎的侧向力与轮胎的偏离角
  • 离散LQR:原理,求解与拓展

    该文档用以总结离散LQR的基本原理 xff0c 反馈控制率的求解和一些拓展 xff08 时变系统 xff0c 跟踪命题等 xff09 主要参考的是Stanford的课程EE363 Linear Dynamical Systems的部分课件
  • Mujoco-欠驱动的二阶单摆的LQR控制

    MuJoCo Lec7 span class token keyword void span span class token function f span span class token punctuation span span c
  • Apollo代码学习(六)—模型预测控制(MPC)

    Apollo代码学习 模型预测控制 前言 模型预测控制 预测模型 线性化 单车模型 滚动优化 反馈矫正 总结 前言 非专业选手 此篇博文内容基于书本和网络资源整理 可能理解的较为狭隘 起点较低 就事论事 如发现有纰漏 请指正 非常感谢 查看
  • [现代控制理论]11_现代控制理论串讲_完结_pdf获取

    DR CAN的现代控制理论的笔记就结束了 加上这篇一共11篇 现代控制理论 11 现代控制理论串讲 完结 pdf获取 现代控制理论 10 可观测性与分离原理 观测器与控制器 现代控制理论 9 状态观测器设计 龙伯格观测器 现代控制理论 8
  • [现代控制理论]11_现代控制理论串讲_完结_pdf获取

    DR CAN的现代控制理论的笔记就结束了 加上这篇一共11篇 现代控制理论 11 现代控制理论串讲 完结 pdf获取 现代控制理论 10 可观测性与分离原理 观测器与控制器 现代控制理论 9 状态观测器设计 龙伯格观测器 现代控制理论 8
  • 控制范围和预测范围

    我已经回顾了模型预测控制的参考书目和 Gekko 编程结构 尽管我了解它的编程方式及其目的 例如 我想了解 Gekko 如何根据 Seborg 中的相关内容来管理控制范围和预测范围之间的差异 我看不出代码有什么区别 下面是一个用于说明的 M

随机推荐

  • Couch的MapReduce查询

    1 MapReduce介绍 传统的关系型数据库中 xff0c 只要你的数据是结构化的 xff0c 你可以进行任何类型的查询 Apache Couch与此相反 xff0c 它使用MapReduce xff08 预定义的map和的reduce方
  • Java遍历读取文件目录结构

    Java读取计算机目录 xff0c 并打印 public class ReadDirectory 文件所在的层数 private int fileLevel 生成输出格式 64 param name 输出的文件名或目录名 64 param
  • Java实现数字水印

    数字水印有可见不可见之分 xff0c 可见的比如课件上印有学校校徽 xff0c 微博发图片会水印上上传者的信息及微博logo等 用java实现可见的数字水印 xff0c 草人主要是用到了java awt包中的AlphaComposite类
  • 程序员应该如何去设计需求

    刚出道的程序员 xff0c 在做需求分析的时候 xff0c 总是经常挨批 xff0c 客户说他们不能按照客户的要求去设计原型 xff0c 领导说他们不用心去与客户沟通交流 程序员总是感到自己很冤枉 xff0c 明明客户没有给出一点建设性建议
  • 小小程序员的一周日报

    工作依旧在有条不紊的进行着 xff0c 一周的时间很快就会过去 xff0c 正如今天李哥所说的 xff0c 这一周还没有感觉怎么过呢 xff0c 就结束了 是啊 xff0c 这就是我们的工作 xff0c 程序员的工作 xff0c 软件设计师
  • 项目空间都有啥

    项目空间是什么 xff0c Workplace 答案是 xff1a No 项目空间是由项目负责人提出的实施某项目方案的一种流程 项目空间是XX海油ERP管理系统下的一个业务 xff0c 项目负责人通过创建项目名称 项目负责人 使用资源 所属
  • 你不要瞧不起Ctrl+C

    曾经 xff0c 在我未参加工作之前 xff0c 我认为靠 Ctrl 43 C 来完成工作的人 xff0c 肯定是懒惰的程序员 xff0c 但是现在我发现我错了 xff0c 而且是彻底的错了 能够通过 Ctrl 43 C 来完成工作的人 x
  • 文档交接说明书(模板)

    因为同事的离职 xff0c 我的入职 xff0c 要从同事手中交接过来一些项目 公司里只有一些开发文档相关的模板 xff0c 并没有文档交接相关的模板 xff0c 所以交接文档的模板也就由我们自己来定 我结合自己在工作中的经验 xff0c
  • UDS网络层/TP层(ISO 15765-2)的解读

    本文是对 ISO 15765 2 2011 协议的一些解读 需要指出该协议的最新版为2016版 TP层存在意义 UDS网络层 xff0c 又称为TP层 xff08 Transport Protocol Layer xff09 其存在的目的是
  • std vector传递指针使用说明

    今天用WM COPYDATA传递一个Vector的指针 xff0c 传递过来始终失败 后面找到一篇文章 xff0c 说只要传递第一个元素的地址就行 xff0c 因为vector在内存是连续的 static std vector lt UIm
  • Leetcode之运算库函数自定义

    一 Leetcode50 pow 注意点 1 n的值可以为正 xff0c 负 xff0c 0 2 O n 会TLE xff0c 使用递归时 xff0c 一定要将中间步保存 3 有博文中提到 xff0c 若n lt 0 xff0c 可以令n
  • 树莓派无键盘安装步骤

    树莓派无键盘安装 下载系统烧录系统配置无线网络开机并连接树莓派更新源和系统安装xrdp xff08 远程访问 xff09 Windows连接远程桌面 下载系统 应该只有官方的Raspbian系统支持无键盘安装 xff0c 官网下载系统 xf
  • iic实现采集温湿度传感器值

    iic h ifndef IIC H define IIC H include 34 stm32mp1xx gpio h 34 include 34 stm32mp1xx rcc h 34 通过程序模拟实现I2C总线的时序和协议 GPIOF
  • Matlab在线运行网站

    桌面版的Matlab不仅安装包很大 xff0c 而且也很吃性能 xff0c 不如就用网页版 xff0c 来玩啊 xff01 https www tutorialspoint com execute matlab online php 点击c
  • An Introduction on Deep Learning for the Physical Layer

    An Introduction on Deep Learning for the Physical Layer 代码实现 xff1a https github com shengjian3476077 DLforPhy 一 文章的主要工作
  • motion planning 一起学习

    shenlan 学院 motion planning 一起学习 打算买深蓝的motion planning for Mobile robots xff0c 主要是讲规划算法的 xff0c 有无一起学习的小伙伴 xff1f 一起学习 xff0
  • 【java面试之Linux】Linux启动过程、

    一 Linux启动过程 启动第一步 xff0d xff0d 加载BIOS 启动第二步 xff0d xff0d 读取MBR 主引导记录 启动第三步 xff0d xff0d Boot Loader 启动第四步 xff0d xff0d 加载内核
  • Linux SPI 驱动示例

    一 Linux 下 SPI 驱动框架 SPI 驱动框架分为主机控制器驱动和设备驱动 xff0c 主机控制器也就是 SOC 的 SPI 控制器接口 1 1 SPI 主机驱动 SPI 主机驱动就是 SOC 的 SPI 控制器驱动 xff0c L
  • 使用 FFmpeg 推流,使用 VLC 软件进行拉流

    1 移植Nginx到开发板 xff0c 使用 Nginx 来搭建 RTMP 流媒体服务器 2 执行如下命令进行推流 xff1a ffmpeg re i run media mmcblk1p1 testVideo mp4 c av copy
  • MPC与LQR的详细对比分析

    从以下几个方面进行阐述 xff1a 一 xff0c 研究对象 xff1a 是否线性 二 xff0c 状态方程 xff1a 离散化 三 xff0c 目标函数 xff1a 误差和控制量的极小值 四 xff0c 工作时域 xff1a 预测时域 x