【学习QT必备的C++基础】C++引用精讲,C++ &用法全面剖析

2023-05-16

文章目录

  • C++引用10分钟入门教程
      • C++引用作为函数参数
      • C++引用作为函数返回值
  • C++引用在本质上是什么,它和指针到底有什么区别?
    • 引用和指针的其他区别
  • C++引用不能绑定到临时数据
    • 什么样的临时数据会放到寄存器中
    • 关于常量表达式
    • 引用也不能指代临时数据
    • 引用作为函数参数

引用是 C++ 的新增内容,在实际开发中会经常使用;C++ 用的引用就如同C语言的指针一样重要,但它比指针更加方便和易用,有时候甚至是不可或缺的。

同指针一样,引用能够减少数据的拷贝,提高数据的传递效率。

本专题不仅仅从语法层面讲解 C++ 引用,而是深入 C++ 引用的本质,让大家不但知其然,而且知其所以然。

C++引用10分钟入门教程

已剪辑自: http://c.biancheng.net/view/2251.html

我们知道,参数的传递本质上是一次赋值的过程,赋值就是对内存进行拷贝。所谓内存拷贝,是指将一块内存上的数据复制到另一块内存上。

对于像 char、bool、int、float 等基本类型的数据,它们占用的内存往往只有几个字节,对它们进行内存拷贝非常快速。而数组、结构体、对象是一系列数据的集合,数据的数量没有限制,可能很少,也可能成千上万,对它们进行频繁的内存拷贝可能会消耗很多时间,拖慢程序的执行效率。

C/C++ 禁止在函数调用时直接传递数组的内容,而是强制传递数组指针,这点已在《C语言指针变量作为函数参数》中进行了讲解。而对于结构体和对象没有这种限制,调用函数时既可以传递指针,也可以直接传递内容;为了提高效率,我曾建议传递指针,这样做在大部分情况下并没有什么不妥,读者可以点击《C语言结构体指针》进行回顾。

但是在 C++ 中,我们有了一种比指针更加便捷的传递聚合类型数据的方式,那就是引用(Reference)。 在 C/C++ 中,我们将 char、int、float 等由语言本身支持的类型称为基本类型,将数组、结构体、类(对象)等由基本类型组合而成的类型称为聚合类型(在讲解结构体时也曾使用复杂类型、构造类型这两种说法)。 引用(Reference)是 C++ 相对于C语言的又一个扩充。引用可以看做是数据的一个别名,通过这个别名和原来的名字都能够找到这份数据。引用类似于 Windows 中的快捷方式,一个可执行程序可以有多个快捷方式,通过这些快捷方式和可执行程序本身都能够运行程序;引用还类似于人的绰号(笔名),使用绰号(笔名)和本名都能表示一个人。

引用的定义方式类似于指针,只是用&取代了*,语法格式为:

type &name = data;

type 是被引用的数据的类型,name 是引用的名称,data 是被引用的数据。引用必须在定义的同时初始化,并且以后也要从一而终,不能再引用其它数据,这有点类似于常量(const 变量)。

下面是一个演示引用的实例:

#include <iostream>
using namespace std;
int main() {
    int a = 99;
    int &r = a;
    cout << a << ", " << r << endl;
    cout << &a << ", " << &r << endl;
    return 0;
}

运行结果:
99, 99
0x28ff44, 0x28ff44

本例中,变量 r 就是变量 a 的引用,它们用来指代同一份数据;也可以说变量 r 是变量 a 的另一个名字。从输出结果可以看出,a 和 r 的地址一样,都是0x28ff44;或者说地址为0x28ff44的内存有两个名字,a 和 r,想要访问该内存上的数据时,使用哪个名字都行。

注意,引用在定义时需要添加&,在使用时不能添加&,使用时添加&表示取地址。如上面代码所示,第 6 行中的&表示引用,第 8 行中的&表示取地址。除了这两种用法,&还可以表示位运算中的与运算。

由于引用 r 和原始变量 a 都是指向同一地址,所以通过引用也可以修改原始变量中所存储的数据,请看下面的例子:

#include <iostream>
using namespace std;
int main() {
    int a = 99;
    int &r = a;
    r = 47;
    cout << a << ", " << r << endl;
    return 0;
}

运行结果:
47, 47

最终程序输出两个 47,可见原始变量 a 的值已经被引用变量 r 所修改。

如果读者不希望通过引用来修改原始的数据,那么可以在定义时添加 const 限制,形式为:

const type &name = value;

也可以是:

type const &name = value;

这种引用方式为常引用

C++引用作为函数参数

在定义或声明函数时,我们可以将函数的形参指定为引用的形式,这样在调用函数时就会将实参和形参绑定在一起,让它们都指代同一份数据。如此一来,如果在函数体中修改了形参的数据,那么实参的数据也会被修改,从而拥有“在函数内部影响函数外部数据”的效果。

至于实参和形参是如何绑定的,我们将在下节《C++引用在本质上是什么,它和指针到底有什么区别?》中讲解,届时我们会一针见血地阐明引用的本质。

一个能够展现按引用传参的优势的例子就是交换两个数的值,请看下面的代码:

#include <iostream>
using namespace std;
void swap1(int a, int b);
void swap2(int *p1, int *p2);
void swap3(int &r1, int &r2);
int main() {
    int num1, num2;
    cout << "Input two integers: ";
    cin >> num1 >> num2;
    swap1(num1, num2);
    cout << num1 << " " << num2 << endl;
    cout << "Input two integers: ";
    cin >> num1 >> num2;
    swap2(&num1, &num2);
    cout << num1 << " " << num2 << endl;
    cout << "Input two integers: ";
    cin >> num1 >> num2;
    swap3(num1, num2);
    cout << num1 << " " << num2 << endl;
    return 0;
}
//直接传递参数内容
void swap1(int a, int b) {
    int temp = a;
    a = b;
    b = temp;
}
//传递指针
void swap2(int *p1, int *p2) {
    int temp = *p1;
    *p1 = *p2;
    *p2 = temp;
}
//按引用传参
void swap3(int &r1, int &r2) {
    int temp = r1;
    r1 = r2;
    r2 = temp;
}

运行结果:
Input two integers: 12 34↙
12 34
Input two integers: 88 99↙
99 88
Input two integers: 100 200↙
200 100

本例演示了三种交换变量的值的方法:

  1. swap1() 直接传递参数的内容,不能达到交换两个数的值的目的。对于 swap1() 来说,a、b 是形参,是作用范围仅限于函数内部的局部变量,它们有自己独立的内存,和 num1、num2 指代的数据不一样。调用函数时分别将 num1、num2 的值传递给 a、b,此后 num1、num2 和 a、b 再无任何关系,在 swap1() 内部修改 a、b 的值不会影响函数外部的 num1、num2,更不会改变 num1、num2 的值。

  2. swap2() 传递的是指针,能够达到交换两个数的值的目的。调用函数时,分别将 num1、num2 的指针传递给 p1、p2,此后 p1、p2 指向 a、b 所代表的数据,在函数内部可以通过指针间接地修改 a、b 的值。我们在《C语言指针变量作为函数参数》中也对比过第 1)、2) 中方式的区别。

  3. swap3() 是按引用传递,能够达到交换两个数的值的目的。调用函数时,分别将 r1、r2 绑定到 num1、num2 所指代的数据,此后 r1 和 num1、r2 和 num2 就都代表同一份数据了,通过 r1 修改数据后会影响 num1,通过 r2 修改数据后也会影响 num2。

从以上代码的编写中可以发现,按引用传参在使用形式上比指针更加直观。在以后的 C++ 编程中,我鼓励读者大量使用引用,它一般可以代替指针(当然指针在C++中也不可或缺),C++ 标准库也是这样做的。

C++引用作为函数返回值

引用除了可以作为函数形参,还可以作为函数返回值,请看下面的例子:

#include <iostream>
using namespace std;
int &plus10(int &r) {
    r += 10;
    return r;
}
int main() {
    int num1 = 10;
    int num2 = plus10(num1);
    cout << num1 << " " << num2 << endl;
    return 0;
}

运行结果:
20 20

在将引用作为函数返回值时应该注意一个小问题,就是不能返回局部数据(例如局部变量、局部对象、局部数组等)的引用,因为当函数调用完成后局部数据就会被销毁,有可能在下次使用时数据就不存在了,C++ 编译器检测到该行为时也会给出警告。

更改上面的例子,让 plus10() 返回一个局部数据的引用:

#include <iostream>
using namespace std;
int &plus10(int &r) {
    int m = r + 10;
    return m;  //返回局部数据的引用
}
int main() {
    int num1 = 10;
    int num2 = plus10(num1);
    cout << num2 << endl;
    int &num3 = plus10(num1);
    int &num4 = plus10(num3);
    cout << num3 << " " << num4 << endl;
    return 0;
}

在 Visual Studio 下的运行结果:

20
-858993450 -858993450

在 GCC 下的运行结果:

20
30 30

在 C-Free 下的运行结果:

20
30 0

而我们期望的运行结果是:

20
20 30

plus10() 返回一个对局部变量 m 的引用,这是导致运行结果非常怪异的根源,因为函数是在栈上运行的,并且运行结束后会放弃对所有局部数据的管理权,后面的函数调用会覆盖前面函数的局部数据。本例中,第二次调用 plus10() 会覆盖第一次调用 plus10() 所产生的局部数据,第三次调用 plus10() 会覆盖第二次调用 plus10() 所产生的局部数据。

关于函数调用的内部实现,我已在《C语言内存精讲》专题中讲到。

C++引用在本质上是什么,它和指针到底有什么区别?

已剪辑自: http://c.biancheng.net/view/vip_2252.html

通过上节的讲解,相信各位读者对引用都有了一个概念上的认识,能够简单地使用引用编程了,但又感觉糊里糊涂,不明白它到底是什么,它和指针有点相似,但又不是一个东西。

首先来回顾一下上节的例子:

#include <iostream>
using namespace std;
int main(){
    int a = 99;
    int &r = a;
    cout<<a<<", "<<r<<endl;
    cout<<&a<<", "<<&r<<endl;
    return 0;
}

运行结果:
99, 99
0x28ff44, 0x28ff44

我们知道,变量是要占用内存的,虽然我们称 r 为变量,但是通过&r获取到的却不是 r 的地址,而是 a 的地址,这会让我们觉得 r 这个变量不占用独立的内存,它和 a 指代的是同一份内存。

请读者再继续看下面的例子:

#include <iostream>
#include <iomanip>
using namespace std;
int num = 99;
class A{
public:
    A();
private:
    int n;
    int &r;
};
A::A(): n(0), r(num){}
int main (){
    A *a = new A();
    cout<<sizeof(A)<<endl;  //输出A类型的大小
    cout<<hex<<showbase<<*((int*)a + 1)<<endl;  //输出r本身的内容
    cout<<&num<<endl;  //输出num变量的地址
    return 0;
}

运行结果:
8
0x442000
0x442000

成员变量 r 是 private 属性的,不能直接通过对象来访问,但是借助强大的指针和类型转换,我们依然可以得到它的内容,只不过这种方法有点蹩脚,我们将在《突破访问权限的限制(C++ Hack)》一节中详细阐述,读者暂时不必理解,只要知道第 20 行代码是用来输出 r 本身的内容的即可。

第 20 行代码中,hex表示以十六进制输出,showbase表示添加十六进制前缀0x

从运行结果可以看出:

  • 成员变量 r 是占用内存的,如果不占用的话,sizeof(A)的结果应该为 4。
  • r 存储的内容是0x442000,也即变量 num 的地址。

这说明 r 的实现和指针非常类似。如果将 r 定义为int *类型的指针,并在构造函数中让它指向 num,那么 r 占用的内存也是 4 个字节,存储的内容也是 num 的地址。

其实引用只是对指针进行了简单的封装,它的底层依然是通过指针实现的,引用占用的内存和指针占用的内存长度一样,在 32 位环境下是 4 个字节,在 64 位环境下是 8 个字节,之所以不能获取引用的地址,是因为编译器进行了内部转换。以下面的语句为例:

int a = 99;
int &r = a;
r = 18;
cout<<&r<<endl;

编译时会被转换成如下的形式:

int a = 99;
int *r = &a;
*r = 18;
cout<<r<<endl;

使用&r取地址时,编译器会对代码进行隐式的转换,使得代码输出的是 r 的内容(a 的地址),而不是 r 的地址,这就是为什么获取不到引用变量的地址的原因。也就是说,不是变量 r 不占用内存,而是编译器不让获取它的地址。

当引用作为函数参数时,也会有类似的转换。以下面的代码为例:

//定义函数
void swap(int &r1, int &r2){
    int temp = r1;
    r1 = r2;
    r2 = temp;
}
//调用函数
int num1 = 10, num2 = 20;
swap(num1, num2);

编译时会被转换成如下的形式:

//定义函数
void swap(int *r1, int *r2){
    int temp = *r1;
    *r1 = *r2;
    *r2 = temp;
}
//调用函数
int num1 = 10, num2 = 20;
swap(&num1, &num2);

引用虽然是基于指针实现的,但它比指针更加易用,从上面的两个例子也可以看出来,通过指针获取数据时需要加*,书写麻烦,而引用不需要,它和普通变量的使用方式一样。

C++ 的发明人 Bjarne Stroustrup 也说过,他在 C++ 中引入引用的直接目的是为了让代码的书写更加漂亮,尤其是在运算符重载中,不借助引用有时候会使得运算符的使用很麻烦。

引用和指针的其他区别

  1. 引用必须在定义时初始化,并且以后也要从一而终,不能再指向其他数据;而指针没有这个限制,指针在定义时不必赋值,以后也能指向任意数据。

  2. 可以有 const 指针,但是没有 const 引用。也就是说,引用变量不能定义为下面的形式:

int a = 20;
int & const r = a;

因为 r 本来就不能改变指向,加上 const 是多此一举。

  1. 指针可以有多级,但是引用只能有一级,例如,int **p是合法的,而int &&r是不合法的。如果希望定义一个引用变量来指代另外一个引用变量,那么也只需要加一个&,如下所示:
int a = 10;
int &r = a;
int &rr = r;
  1. 指针和引用的自增(++)自减(–)运算意义不一样。对指针使用 ++ 表示指向下一份数据,对引用使用 ++ 表示它所指代的数据本身加 1;自减(–)也是类似的道理。请看下面的例子:
#include <iostream>
using namespace std;
int main (){
    int a = 10;
    int &r = a;
    r++;
    cout<<r<<endl;
   
    int arr[2] = { 27, 84 };
    int *p = arr;
    p++;
    cout<<*p<<endl;
    return 0;
}

运行结果:
11
84

C++引用不能绑定到临时数据

已剪辑自: http://c.biancheng.net/view/vip_2253.html

我们知道,指针就是数据或代码在内存中的地址,指针变量指向的就是内存中的数据或代码。这里有一个关键词需要强调,就是内存,指针只能指向内存,不能指向寄存器或者硬盘,因为寄存器和硬盘没法寻址。

其实 C++ 代码中的大部分内容都是放在内存中的,例如定义的变量、创建的对象、字符串常量、函数形参、函数体本身、newmalloc()分配的内存等,这些内容都可以用&来获取地址,进而用指针指向它们。除此之外,还有一些我们平时不太留意的临时数据,例如表达式的结果、函数的返回值等,它们可能会放在内存中,也可能会放在寄存器中。一旦它们被放到了寄存器中,就没法用&获取它们的地址了,也就没法用指针指向它们了。

下面的代码演示了表达式所产生的临时结果:

int n = 100, m = 200;
int *p1 = &(m + n);    //m + n 的结果为 300
int *p2 = &(n + 100);  //n + 100 的结果为 200
bool *p4 = &(m < n);   //m < n 的结果为 false

这些表达式的结果都会被放到寄存器中,尝试用&获取它们的地址都是错误的。

下面的代码演示了函数返回值所产生的临时结果:

int func(){
    int n = 100;
    return n;
}
int *p = &(func());

func() 的返回值 100 也会被放到寄存器中,也没法用&获取它的地址。

什么样的临时数据会放到寄存器中

寄存器离 CPU 近,并且速度比内存快,将临时数据放到寄存器是为了加快程序运行。但是寄存器的数量是非常有限的,容纳不下较大的数据,所以只能将较小的临时数据放在寄存器中。int、double、bool、char 等基本类型的数据往往不超过 8 个字节,用一两个寄存器就能存储,所以这些类型的临时数据通常会放到寄存器中;而对象、结构体变量是自定义类型的数据,大小不可预测,所以这些类型的临时数据通常会放到内存中。

下面的代码是正确的,它证明了结构体类型的临时数据会被放到内存中:

#include <iostream>
using namespace std;
typedef struct{
    int a;
    int b;
} S;
//这里用到了一点新知识,叫做运算符重载,我们会在《运算符重载》一章中详细讲解
S operator+(const S &A, const S &B){
    S C;
    C.a = A.a + B.a;
    C.b = A.b + B.b;
    return C;
}
S func(){
    S a;
    a.a = 100;
    a.b = 200;
    return a;
}
int main(){
    S s1 = {23, 45};
    S s2 = {90, 75};
    S *p1 = &(s1 + s2);
    S *p2 = &(func());
    cout<<p1<<", "<<p2<<endl;
    return 0;
}

运行结果:
0x28ff28, 0x28ff18 第10行代码用到了运算符重载,我们将在《C++运算符重载》一章中详细讲解。

关于常量表达式

诸如 100、200+34、34.5*23、3+7/3 等不包含变量的表达式称为常量表达式(Constant expression)。

常量表达式由于不包含变量,没有不稳定因素,所以在编译阶段就能求值。编译器不会分配单独的内存来存储常量表达式的值,而是将常量表达式的值和代码合并到一起,放到虚拟地址空间中的代码区。从汇编的角度看,常量表达式的值就是一个立即数,会被“硬编码”到指令中,不能寻址。 关于虚拟地址空间的分区,我们已在《Linux下C语言程序的内存布局》一节中讲到。 总起来说,常量表达式的值虽然在内存中,但是没有办法寻址,所以也不能使用&来获取它的地址,更不能用指针指向它。下面的代码是错误的,它证明了不能用&来获取常量表达式的地址:

int *p1 = &(100);
int *p2 = &(23 + 45 * 2);

引用也不能指代临时数据

引用和指针在本质上是一样的,引用仅仅是对指针进行了简单的封装。引用和指针都不能绑定到无法寻址的临时数据,并且 C++ 对引用的要求更加严格,在某些编译器下甚至连放在内存中的临时数据都不能指代。

下面的代码中,我们将引用绑定到了临时数据:

typedef struct{
    int a;
    int b;
} S;
int func_int(){
    int n = 100;
    return n;
}
S func_s(){
    S a;
    a.a = 100;
    a.b = 200;
    return a;
}
//这里用到了一点新知识,叫做运算符重载,我们会在《运算符重载》一章中详细讲解
S operator+(const S &A, const S &B){
    S C;
    C.a = A.a + B.a;
    C.b = A.b + B.b;
    return C;
}
int main(){
    //下面的代码在GCC和Visual C++下都是错误的
    int m = 100, n = 36;
    int &r1 = m + n;
    int &r2 = m + 28;
    int &r3 = 12 * 3;
    int &r4 = 50;
    int &r5 = func_int();
   
    //下面的代码在GCC下是错误的,在Visual C++下是正确的
    S s1 = {23, 45};
    S s2 = {90, 75};
    S &r6 = func_s();
    S &r7 = s1 + s2;
    return 0;
}

第 28~33 行代码在 GCC 和 Visual C++ 下都不能编译通过,第 38~39 行代码在 Visual C++ 下能够编译通过,但是在 GCC 下编译失败。这说明:

  • 在 GCC 下,引用不能指代任何临时数据,不管它保存到哪里;
  • 在 Visual C++ 下,引用只能指代位于内存中(非代码区)的临时数据,不能指代寄存器中的临时数据。

引用作为函数参数

当引用作为函数参数时,有时候很容易给它传递临时数据。下面的 isOdd() 函数用来判断一个数是否是奇数:

bool isOdd(int &n){
    if(n%2 == 0){
        return false;
    }else{
        return true;
    }
}
int main(){
    int a = 100;
    isOdd(a);  //正确
    isOdd(a + 9);  //错误
    isOdd(27);  //错误
    isOdd(23 + 55);  //错误
    return 0;
}

isOdd() 函数用来判断一个数是否为奇数,它的参数是引用类型,只能传递变量,不能传递常量或者表达式。但用来判断奇数的函数不能接受一个数字又让人感觉很奇怪,所以类似这样的函数应该坚持使用值传递,而不是引用传递。

下面是更改后的代码:

bool isOdd(int n){  //改为值传递
    if(n%2 == 0){
        return false;
    }else{
        return true;
    }
}
int main(){
    int a = 100;
    isOdd(a);  //正确
    isOdd(a + 9);  //正确
    isOdd(27);  //正确
    isOdd(23 + 55);  //正确
    return 0;
}
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

【学习QT必备的C++基础】C++引用精讲,C++ &用法全面剖析 的相关文章

  • 单片机ADC常见的几种滤波方法

    已剪辑自 https mp weixin qq com s ObtCPcxnBmpr3mR7NPkB7Q 如今传感器的种类越来越多 xff0c 数量也越来越多 xff0c 而这些传感器很多都会用到模拟量 xff0c 模拟量就离不开ADC 然
  • 浅谈民机软件适航宝典-DO-178

    已剪辑自 https mp weixin qq com s cyx9fSwpX35nDBkHqtO9lQ 序言 DO 178有一个不起眼的标题 机载系统和设备合格审定中的软件考虑 xff0c 但最好不要光看表面 实际上 xff0c 在业界中
  • 嵌入式状态机的几种骚操作

    已剪辑自 https mp weixin qq com s tulMJ7S7oOqV01J2E 9Xg 1 状态机基本术语 现态 xff1a 是指当前所处的状态 条件 xff1a 又称为 事件 xff0c 当一个条件被满足 xff0c 将会
  • 玩RTOS这么久,一问原子操作,蒙了~

    已剪辑自 https mp weixin qq com s kvxcOHT xHtMAjQqJu7Y2g 外链图片转存失败 源站可能有防盗链机制 建议将图片保存下来直接上传 img C3f9Rrei 1668695258073 https
  • 瑞利信道:从原理到实现

    瑞利信道模型 瑞利信道模型是无线通信信道最重要 最基础的的仿真模型 无线信道中的平坦衰落信道基本上都是在瑞利信道模型的基础上修改而成 xff0c 比如应用同样广泛的莱斯信道就可以通过在瑞利信道的基础上简单的添加直流分量实现 xff0c 而频
  • 分享一个通用的嵌入式驱动层

    https mp weixin qq com s bzPg5SremHDeIiguzvUVFA
  • 这次把怎么做好一个PPT讲清-总体篇

    文章目录 一 背景二 图表化 图示化三 关键词设计四 版式层级五 逻辑关系图 1 xff09 常用逻辑 2 xff09 如何让逻辑关系图好看 六 对齐 分组和对比 对齐 分组 分组就是将同类得信息放在一起 xff0c 靠的更近一点 那么 x
  • 这次把怎么做好一个PPT讲清-画图篇

    文章目录 概述布尔运算PPT幻灯片中如何设置形状对象格式每一个图形既是一个形状 xff0c 又是一个文本框 如何用PPT来实现三维3D效果 xff0c 附参数设置详解怎么用ppt画三维立体图 PPT做3D可动样机 PPT做3D 动态图标 P
  • 这次把怎么做好一个PPT讲清-其他技巧篇

    文章目录 如何统一批量设置PPT的中文字体和英文字体ppt如何插入页码和时间工具 原料插入页码和时间的步骤 xff1a 注意事项 在Powerpoint幻灯片里显示总页数在Powerpoint 2010中添加幻灯片编号在Powerpoint
  • 这次把怎么做好一个PPT讲清-审美篇

    要提高审美 xff0c 主要是靠不断的看优秀的作品来知道什么是美的 xff0c 这个短时间很难速成 xff0c 只能靠不断的积累 如何做出具有高级感的PPT xff1f 已剪辑自 https zhuanlan zhihu com p 386
  • 这样做时间轴,让你的PPT更出彩!

    文章目录 方法一 xff1a 美化时间节点 方法二 xff1a 利用图片中的 轴 方法三 xff1a 时间轴不一定需要 轴 方法四 xff1a 把时间轴拆成数页 总结 已剪辑自 https zhuanlan zhihu com p 5667
  • PPT文字很多的排版,PPT图片很多的排版,PPT图文排版

    文章目录 专业设计师是如何把一个word变成PPT的 xff1f 搭建 骨架 xff0c 填充 血肉 内页的排版 对页面的可视化处理 PPT文字巨多 xff01 领导还不让删 xff0c 怎么排版才高大上 xff1f 排版技巧一 xff1a
  • PPT目录页怎么设计才高大上?告诉你一个万能排版法!

    已剪辑自 https zhuanlan zhihu com p 64526891 嗨 xff0c 各位木友们好呀 xff0c 我是小木 帅的人都知道 xff0c 一个完整的PPT xff0c 一般应该要有 封面 43 目录 43 过渡页 4
  • 这样做框架结构图,让你的PPT更有创意!

    已剪辑自 https zhuanlan zhihu com p 58834710 嗨 xff0c 各位木友们好呀 xff0c 我是小木 昨天 xff0c 有个跟我一样鸟人的鸟人让我帮忙做个框架结构图 xff1a 可惜当时我不在办公室 xff
  • 如何画架构图?

    平时做过一些系统设计 xff0c 也写过一些系统分析文章 xff0c 从组件 关系 交互等方面提供一些建议 xff0c 并用我之前写文章画的一些图举些例子 构成系统的组件通过形状 颜色 名称来逼近其概念 LevelDB 主要构件如上面 Le
  • 主定理的证明及应用举例

    主定理 主定理最早出现在 算法导论 中 xff0c 提供了分治方法带来的递归表达式的渐近复杂度分析 规模为n的问题通过分治 xff0c 得到a个规模为n b的问题 xff0c 每次递归带来的额外计算为c n d T n lt 61 aT n
  • 程序员怎样才能写出一篇好的博客或者技术文章?

    文章目录 来分享下鹅厂多位技术同学关于如何写好技术文章的经验 1 为什么要写文章 1 1 对作者的好处 1 1 1 复盘学习成果 xff0c 巩固知识理解 1 1 2 提升思考能力 1 1 3 传播技术知识 xff0c 积累技术资产 1 1
  • 数字孪生技术有没有真正的实用价值?

    作为一个数字孪生领域的技术公司负责人 xff0c 我尽可能用比较直白的话来描述一下我对数字孪生行业以及数字孪生价值的理解 纵观数字孪生相关的公司 xff0c 主要有两个流派 xff0c 一派是具有互联网基因的数字孪生创业公司 xff0c 一
  • 你在编程过程中养成了哪些好习惯?

    写工作日志 我一直有大量写笔记的习惯 编程的时候 xff0c 也经常遇到一些麻烦的问题 xff0c 思路转瞬即逝 xff0c 于是把所有这些思路记录下来 xff0c 会在以后的搜索中成为重要的灵感来源 我的工作日志里通常以项目为单位 xff
  • 如何让 PPT 中的表格更美观?

    这个不难 xff0c 不信你看 做PPT表格 xff0c 千万不要直接把Excel截个图粘贴到PPT里 或者网上找到相应的表格图片 xff0c 也直接粘贴到PPT中 这样做的PPT表格肯定不好看呀 今天和大家分享几个表格美化的小技巧 xff

随机推荐

  • 这次把怎么做好一个PPT讲清-演讲篇

    商务演讲与汇报 一 目标 xff1a 演讲必须有清晰的目标 演讲 xff1a 影响他人发生积极的 改变 注意 xff0c 目标就要设定的影响听众在听完你的演讲后发生积极的改变 xff1b 例 xff1a 5月初向领导做月度工作汇报 让领导在
  • 这次把怎么做好一个PPT讲清-动画篇

    干货预警 xff01 作为一位PPT发烧友看过诸多PPT案例 xff0c 分享几个高大上的动画效果 文末有福利 xff01 废话不多说 xff0c 直接上重点 xff0c 本文主要讲八个动画技巧 xff0c 我们来看先目录 xff1a 收藏
  • 重新认知发明,全网保姆级入门说明

    已剪辑自 https mp weixin qq com s IDQXYXpWQlaW1NyX36H2vQ 关注 林外的日课 公众号 xff1a 每日思考 xff0c 每周更新 发明 xff0c 是指对产品 方法或者其改进所提出的新的技术方案
  • 软件测试需要掌握哪些技术?

    文章目录 1 黑盒测试 白盒测试 灰盒测试1 1 黑盒测试1 2 白盒测试1 3 灰盒测试 2 自顶向下集成和自底向上集成各自的优缺点 2 1 自顶向下集成2 2 自底向上集成 3 按照开发阶段划分 xff0c 软件测试可以分为哪几个流程
  • 画时序图的四个好用的工具~

    已剪辑自 https mp weixin qq com s xvCOLaGARp15vCRq6w8h2Q 分享几个画时序图的软件 xff0c 一些通信协议 xff0c 如I2C SPI UART MIPI等 xff0c 都会涉及到时序 Ti
  • Google软件工程:什么是软件工程

    文章目录 编程 软件工程软件工程的3个特性时间与变化海勒姆定律 xff08 Hyrum s Law xff09 目标不是 没有变化 规模和效率左移思维 权衡和成本最后 已剪辑自 https mp weixin qq com s GhYfH3
  • 多普勒失真信号重采样的Matlab仿真分析

    多普勒失真信号重采样的Matlab仿真分析 应用场景 水声通信指的是使用声信号在水中传输数据 相对而言 xff0c 电磁信号在水中吸收严重衰减过快 xff0c 光信号受水中悬浮颗粒的影响 xff0c 也无法完成远距离传输 这两种信号的传播距
  • 嵌入式为何钟爱SourceInsight,主要因为这个功能~

    已剪辑自 https mp weixin qq com s F gafwbZswpnY8EaCz8HxQ 不管是玩单片机还是嵌入式linux xff0c 只要是与硬件结合比较紧密的部分目前基本上还是C语言 xff0c 当然了 xff0c 不
  • 华科师兄最近的六条感悟

    已剪辑自 https mp weixin qq com s P6vz2zDTnCNli0GdyKX98Q 孤独之前是迷茫 孤独之后便是成长 曾经我是一个无法承受孤独的人 xff0c 无法和自己独处 xff0c 喜欢喧嚣的感觉 慢慢我发现这种
  • 一个优秀的程序员应该养成哪些好的习惯?

    文章目录 一 写代码前先想好思路 xff0c 先规划框架 xff0c 再到局部实现二 注重代码风格三 注重代码执行效率四 掌握一些编码原则五 解决问题时 xff0c 对于原理性的问题 xff0c 不要面向搜索引擎编程 六 注重基础知识的学习
  • 嵌入式开发中的防御性C语言编程

    嵌入式产品的可靠性自然与硬件密不可分 xff0c 但在硬件确定 并且没有第三方测试的前提下 xff0c 使用防御性编程思想写出的代码 xff0c 往往具有更高的稳定性 防御性编程首先需要认清C语言的种种缺陷和陷阱 xff0c C语言对于运行
  • PPT 最后一页写什么结束语既得体又能瞬间提升格调?

    谢邀 xff01 我只分享一个现下最流行的方法 xff0c 绝对让尾页逼格满满 xff01 罗永浩雷军都在用的 金句法 提到这份方法 xff0c 你可能会觉得很陌生 xff0c 但你一定见过这样的页面 xff1a 这样的页面还有很多 xff
  • Qt控件和事件

    文章目录 什么是 Qt 控件什么是Qt事件总结 已剪辑自 http c biancheng net view vip 9651 html Qt 是一个著名的 GUI 框架 xff0c 用来开发和用户交互的图形界面 作为 GUI 框架 xff
  • Qt信号和槽机制详解

    文章目录 信号和槽connect 函数实现信号和槽实例演示信号和槽机制 已剪辑自 http c biancheng net view vip 9652 html 信号和槽是 Qt 特有的消息传输机制 xff0c 它能将相互独立的控件关联起来
  • Qt QLabel文本框的使用

    文章目录 QLabel文本框的使用QLabel文本框的信号和槽实例演示QLabel文本框的用法 已剪辑自 http c biancheng net view vip 9653 html QLabel 是 Qt 帮我们写好的一个控件类 xff
  • Qt QPushButton按钮用法详解

    文章目录 QPushButton按钮的创建QPushButton按钮的使用QPushButton按钮的信号和槽实例演示QPushButton按钮用法 已剪辑自 http c biancheng net view vip 9654 html
  • Qt QLineEdit单行输入框用法详解

    已剪辑自 http c biancheng net view vip 9655 html QLineEdit 是 Qt 提供的一个控件类 xff0c 它直接继承自 QWdiget 类 xff0c 专门用来创建单行输入框 xff0c 如下图所
  • 使用python开发json、csv数据格式转换工具

    使用python开发json csv数据格式转换工具 json和xml是业界常用的数据格式 xff0c 而游戏行业经常使用csv配表 xff0c 包括本地化文本和数值 本文介绍csv和json序列化 逆序列化相关的python库 xff0c
  • 【学习QT必备的C++基础】C++类和对象

    文章目录 C 43 43 类的定义和对象的创建详解类的定义创建对象访问类的成员使用对象 指针 http c biancheng net c 80 总结 C 43 43 类的成员变量和成员函数详解在类体中和类体外定义成员函数的区别 C 43
  • 【学习QT必备的C++基础】C++引用精讲,C++ &用法全面剖析

    文章目录 C 43 43 引用10分钟入门教程C 43 43 引用作为函数参数C 43 43 引用作为函数返回值 C 43 43 引用在本质上是什么 xff0c 它和指针到底有什么区别 xff1f 引用和指针的其他区别 C 43 43 引用