Keil 模拟器 STM32F103 上手指南

2023-05-16

一般嵌入式操作系统因为它的特殊性,往往和硬件平台密切相关连,具体的嵌入式操作系统往往只能在特定的硬件上运行。对于刚接触 RT-Thread 操作系统的读者并不容易马上就获得一个和 RT-Thread 操作系统相配套的硬件模块,但随着计算机技术的发展,我们可以采用软件方式来模拟一个能够运行 RT-Thread 操作系统的硬件模块,这就是 ARM 公司的 MDK-ARM 仿真模拟环境。

MDK-ARM(MDK-ARM Microcontroller Development Kit)软件是一套完整的集成开发环境(IDE),它出自 ARM 公司,包括了针对 ARM 芯片(ARM7,ARM9,Cortex-M 系列,Cortex-R 系列等)的高效 C/C++ 编译器;针对各类 ARM 设备、评估板的工程向导,工程管理;用于软件模拟运行硬件平台的模拟器;以及与市面上常见的如 ST-Link,JLink 等在线仿真器相连接以配合调试目标板的调试器。MDK-ARM 软件中的软件仿真模拟器,采用完全软件模拟方式解释执行 ARM 的机器指令,并实现外围的一些外设逻辑,从而构成一套完整的虚拟硬件环境,使得用户能够不借助真实的硬件平台就能够在电脑上执行相应的目标程序。

MDK-ARM 集成开发环境因为其完全的 STM32F103 软件仿真环境,也让我们有机会在不使用真实硬件环境的情况下直接在电脑上运行目标代码。这套软件仿真模拟器能够完整地虚拟出 ARM Cortex-M3 的各种运行模式、外设,如中断异常,时钟定时器,串口等,这几乎和真实的硬件环境完全一致。实践也证明,本文使用到的这份 RT-Thread 入门例程,在编译成二进制代码后,不仅能够在模拟器上软件模拟运行,也能够不需要修改地在真实硬件平台上正常运行。

下面我们将选择 MDK-ARM 集成开发环境作为目标硬件平台来观察 RT-Thread 操作系统是如何运行的。

准备工作

MDK 开发环境:需要安装 MDK-ARM 5.24 (正式版或评估版,5.14 版本及以上版本均可),这个版本也是当前比较新的版本,它能够提供相对比较完善的调试功能。安装方法可以参考 Keil MDK安装。

使用 STM32F103 软件仿真 ,还需要下载安装 STM32F103 pack 文件,如果在 MDK 中下载较慢,也可以点击此处下载,下载后双击安装即可。

初识 RT-Thread

作为一个操作系统,RT-Thread 的代码规模怎么样呢?在弄清楚这些之前,我们先要做的就是获得与本文相对应的 RT-Thread 的例子,这份例子可以从以下链接获得:

RT-Thread Simulator 例程

这个例子是一个压缩包文件,将它解压,我们这里解压到 D:/。解压完成后的目录结构如下图所示:

rtthread_simulator_v0.1.0 代码目录

各个目录所包含的文件类型的描述如下表所示:

目录名描述
applicationsRT-Thread 应用程序。
rt-threadRT-Thread 的源文件。
- componentsRT-Thread 的各个组件目录。
- includeRT-Thread 内核的头文件。
- libcpu各类芯片的移植代码,此处包含了 STM32 的移植文件。
- srcRT-Thread 内核的源文件。
- toolsRT-Thread 命令构建工具的脚本文件。
driversRT-Thread 的驱动,不同平台的底层驱动具体实现。
LibrariesST 的 STM32 固件库文件。
kernel-sample-0.1.0RT-Thread 的内核例程。

在目录下,有一个 project.uvprojx 文件,它是本文内容所引述的例程中的一个 MDK5 工程文件,双击 “project.uvprojx” 图标,打开此工程文件:

打开第一个 RT-Thread 工程

在工程主窗口的左侧 Project 栏里可以看到该工程的文件列表,这些文件被分别存放到如下几个组内,分别是:

目录组描述
Applications对应的目录为 rtthread_simulator_v0.1.0/applications,它用于存放用户应用代码。
Drivers对应的目录为 rtthread_simulator_v0.1.0/drivers,它用于存放 RT-Thread 底层的驱动代码。
STM32_HAL对应的目录为 rtthread_simulator_v0.1.0/Libraries/CMSIS/Device/ST/STM32F1xx,它用于存放 STM32 的固件库文件。
kernel-sample对应的目录为 rtthread_simulator_v0.1.0/kernel-sample-0.1.0,它用于存放 RT-Thread 的内核例程。
Kernel对应的目录为 rtthread_simulator_v0.1.0/src,它用于存放 RT-Thread 内核核心代码。
CORTEX-M3对应的目录为 rtthread_simulator_v0.1.0/rt-thread/libcpu,它用于存放 ARM Cortex-M3 移植代码。
DeviceDrivers对应的目录为 rtthread_simulator_v0.1.0/rt-thread/components/drivers,它用于存放 RT-Thread 驱动框架源码。
finsh对应的目录为 rtthread_simulator_v0.1.0/rt-thread/components/finsh,它用于存放 RT-Thread 命令行 finsh 命令行组件。

现在我们点击一下窗口上方工具栏中的按钮img,对该工程进行编译,如图所示:

编译工程

编译的结果显示在窗口下方的 “Build” 栏中,没什么意外的话,最后一行会显示“0 Error(s), * Warning(s).”,即无任何错误和警告。

注:由于工程中包含的内核例程代码较多,若使用的是 MDK 试用版本,则会有 16KB 限制,此时可以只保留某个目标例程的代码(例如内核例程只保留一个 thread_sample.c 参与编译),将其他不用的例程先从工程中移除,然后编译。

在编译完 RT-Thread/STM32 后,我们可以通过 MDK-ARM 的模拟器来仿真运行 RT-Thread。点击窗口右上方的按钮img或直接按 “Ctrl+F5” 进入仿真界面,再按 F5 开始运行,然后点击该图工具栏中的按钮或者选择菜单栏中的 “View→Serial Windows→UART#1”,打开串口 1 窗口,可以看到串口的输出只显示了 RT-Thread 的 LOGO,这是因为用户代码是空的,其模拟运行的结果如图所示:

模拟运行 RT-Thread

提示:我们可以通过输入Tab键或者 help + 回车 输出当前系统所支持的所有命令,如下图所示。

模拟运行 RT-Thread

系统启动代码

一般了解一份代码大多从启动部分开始,同样这里也采用这种方式,先寻找启动的源头。以 MDK-ARM 为例,MDK-ARM 的用户程序入口为 main() 函数,位于 main.c 文件中。系统启动后先从汇编代码 startup_stm32f103xe.s 开始运行,然后跳转到 C 代码,进行 RT-Thread 系统功能初始化,最后进入用户程序入口 main()。

下面我们来看看在 components.c 中定义的这段代码:

//components.c 中定义
/* re-define main function */
int $Sub$$main(void)
{
    rt_hw_interrupt_disable();
    rtthread_startup();
    return 0;
}复制错误复制成功

在这里 $Sub$$main 函数仅仅调用了 rtthread_startup() 函数。RT-Thread 支持多种平台和多种编译器,而 rtthread_startup() 函数是 RT-Thread 规定的统一入口点,所以 $Sub$$main 函数只需调用 rtthread_startup() 函数即可。例如采用 GNU GCC 编译器编译的 RT-Thread,就是直接从汇编启动代码部分跳转到 rtthread_startup() 函数中,并开始第一个 C 代码的执行的。在 components.c 的代码中找到 rtthread_startup() 函数,我们将可以看到 RT-Thread 的启动流程:

int rtthread_startup(void)
{
    rt_hw_interrupt_disable();

    /* board level initalization
     * NOTE: please initialize heap inside board initialization.
     */
    rt_hw_board_init();

    /* show RT-Thread version */
    rt_show_version();

    /* timer system initialization */
    rt_system_timer_init();

    /* scheduler system initialization */
    rt_system_scheduler_init();

#ifdef RT_USING_SIGNALS
    /* signal system initialization */
    rt_system_signal_init();
#endif

    /* create init_thread */
    rt_application_init();

    /* timer thread initialization */
    rt_system_timer_thread_init();

    /* idle thread initialization */
    rt_thread_idle_init();

    /* start scheduler */
    rt_system_scheduler_start();

    /* never reach here */
    return 0;
}复制错误复制成功

这部分启动代码,大致可以分为四个部分

  • 初始化与系统相关的硬件;
  • 初始化系统内核对象,例如定时器,调度器;
  • 初始化系统设备,这个主要是为 RT-Thread 的设备框架做的初始化;
  • 初始化各个应用线程,并启动调度器。

用户入口代码

上面的启动代码基本上可以说都是和 RT-Thread 系统相关的,那么用户如何加入自己的应用程序的初始化代码呢?RT-Thread 将 main 函数作为了用户代码入口,只需要在 main 函数里添加自己的代码即可。

int main(void)
{
  /* user app entry */
  return 0;
}复制错误复制成功

提示:
为了在进入 main 程序之前,完成系统功能初始化,可以使用 $sub$$$super$$ 函数标识符在进入主程序之前调用另外一个例程,这样可以让用户不用去管 main() 之前的系统初始化操作。详见ARM® Compiler v5.06 for µVision® armlink User Guide

跑马灯的例子

对于从事电子方面开发的技术工程师来说,跑马灯大概是最简单的例子,就类似于每种编程语言中程序员接触的第一个程序 Hello World 一样,所以这个例子就从跑马灯开始。让它定时地对 LED 进行更新(亮或灭)。

我们 UART#1 中输入 msh 命令:led 然后回车就可以运行起来了,如图所示:

模拟运行跑马灯

跑马灯例子

/*
 * 程序清单:跑马灯例程
 *
 * 跑马灯大概是最简单的例子,就类似于每种编程语言中程序员接触的第一个程序
 * Hello World 一样,所以这个例子就从跑马灯开始。创建一个线程,让它定时地对
 * LED 进行更新(亮或灭)
 */

int led(void)
{
    rt_uint8_t count;

    rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);

    for(count = 0 ; count < 10 ;count++)
    {
        rt_pin_write(LED_PIN, PIN_HIGH);
        rt_kprintf("led on, count : %d\r\n", count);
        rt_thread_mdelay(500);

        rt_pin_write(LED_PIN, PIN_LOW);
        rt_kprintf("led off\r\n");
        rt_thread_mdelay(500);
    }
    return 0;
}
MSH_CMD_EXPORT(led, RT-Thread first led sample);复制错误复制成功

其他例子

其他更多的内核示例可以从 kernel-sample-0.1.0 目录下找到。

更多内核示例

常见问题

  • 出现如下编译错误
rt-thread\src\kservice.c(823): error: #929: incorrect use of vaarg fieldwidth = aarg(args, int);
rt-thread\src\kservice.c(842): error: #929: incorrect use of vaarg precision = aarg(args, int);
………复制错误复制成功

原因:这类问题基本上都是因为安装了 ADS 导致,ADS 与 keil共存,va_start 所在的头文件指向了 ADS 的文件夹。

解决办法:

  • 删除 ADS 环境变量
  • 卸载 ADS 和 keil,重启电脑,重装keil

第三方 RTOS 兼容层

为方便之前有其他 RTOS 使用经验的用户快速上手 RT-Thread,以及将基于其他 RTOS 的 API 编写的应用层代码快速移植到 RT-Thread 上,RT-Thread 社区编写了第三方 RTOS 兼容层。目前支持以下第三方 RTOS 的 API 无感移植:

  • uCOS-II操作系统兼容层
  • uCOS-III操作系统兼容层

以上第三方 RTOS 兼容层均提供本章所述的STM32F103 Keil 软件模拟工程,以供入门者可以不依托开发板评估兼容层。


转载于:https://www.rt-thread.org/document/site/#/rt-thread-version/rt-thread-standard/tutorial/quick-start/stm32f103-simulator/stm32f103-simulator

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Keil 模拟器 STM32F103 上手指南 的相关文章

  • keil添加新文件.c.h

    文章目录 添加文件到组中1 双击组名称2 点击快捷键 添加头文件路径 h1 点击魔术棒快捷键2 头文件加 添加文件到组中 1 双击组名称 双击组名称 xff0c 打开弹窗 xff0c 然后选择相应的组中的新文件 xff0c 在点击ADD 2
  • BH1750光强度传感器Stm32f103驱动(已测试ok)

    1 实验 Stm32f103 驱动 bh1750采集光照强度 串口打印采集到的数据 2 实验准备器材 开发版 stm32f103c8t6 器件 bh1750 GY 302 开发环境 win10 KILE4 下载程序的软件 FlyMcu ex
  • 005--Keil使用--出现integer conversion resulted in truncation

    warning 69 D integer conversion resulted in truncation 问题所在 变量赋值超出了变量类型的最大值 解决方法 找到该变量 适当修改变量的类型
  • STM32 超声波模块测距

    目录 HC SR04模块 HC SR04超声波测距模块工作原理 HC SR04超声波模块的时序触发图 思路步骤 代码 实验结果 总结 HC SR04模块 HC SR04超声波测距模块工作原理 1 采用IO口TRIG触发测距 给至少10us的
  • 基于STM32F103 实现按键状态机

    文章目录 开发板 开发环境 前言 按键消抖 按键硬件原理图 软件延时实现思路 实验目的 代码 按键状态 按键信息 按键相关定义 按键底层配置及状态获取 总结 开发板 正点原子STM32F103ZET6战舰 开发环境 stm32cubeMX
  • 51单片机开发系列一-51单片机开发环境搭建以及入门汇编代码

    51单片机开发系列一 51单片机开发环境搭建以及入门汇编代码 象棋小子 1048272975 1 51单片机概述 51单片机是对所有兼容Intel 8031指令系统的单片机的统称 目前教科书基本都是以早期的MCS 51为原型 讲解微机的原理
  • 如何根据芯片手册时序图编写驱动程序

    如何根据芯片手册时序图编写驱动程序 对于电子开发者来说 刚刚拿到一个芯片 常用的芯片可以参考网上的例程来做深入了解 对于一个不常用的芯片来说 Datasheet几乎是使用芯片的唯一的资料 所以根据Datasheet时序图写出对应的驱动程序就
  • keil5 编辑栏一直是灰色

    无语了 气炸了 愤怒啊 查了一下 有很多 arm 和 c51 并存 不管他了 之前装了用完51 又装了arm 现在反而什么都用不了 打开license 发现过期了 重新破解 即可 注意音乐 大半夜吓死人 你以为这样就可以了 你就太天真了 网
  • STM32定时器-基本定时器

    目录 定时器分类 基本定时器功能框图讲解 基本定时器功能 时钟源 计数器时钟 计数器 自动重装载寄存器 定时时间的计算 定时器初始化结构体详解 实验 定时器分类 STM32F1 系列中 除了互联型的产品 共有 8 个定时器 分为基本定时器
  • Keil报错:Libraries\CMSIS\stm32f10x.h(298): error: #67: expected a "}"

    原因主要有三点 启动文件 头文件定义 驱动选择不一致 各项如下 1 启动文件 2 头文件定义 3 驱动选择 会导致报错的情况案例 1 启动文件为startup stm32f10x md s C C 的Define为 STM32F10X HD
  • Keil编程中Source Brower : "P17" is undefined!的问题

    博客原文 Keil编程中Source Brower P17 is undefined 的问题 在Keil新建工程中经常会遇到一个问题 去看某一个变量定义 然后跳转不过去 并提示Source Brower 某某 is undefined 在这
  • Keil不能正确生成.bin文件的解决办法

    1 打开keil IDE 然后打开help gt uVison Help 搜索fromelf关键字如下图1 然后再进入到右下角的索引找到fromelf命令行的语法和选项 找到 bin的说明如下 如红色标注所说 正是症结所在 即如果链接文件中
  • STM32基本IO的寄存器介绍

    STM32基本IO的寄存器介绍 说明 简介 端口配置低寄存器 32位 数据寄存器 32位 置位 复位寄存器 32位 复位寄存器 16位 锁存寄存器 32位 说明 最近自己在学习STM32 跟着原子哥的STM32教学视频学习 参考的资料有来自
  • 关于STM32调试器CMSIS_DAP的使用及注意事项

    说明 最近在淘宝上买了一个STM32F4x1系列的最小系统板 提供CMSIS DAP固件 进群领取固件 秒变CMSIS DAP调试器 技术交流QQ群 970663546 售后QQ群 1055686596 凭订单号进入 1 关于KEIL设置
  • keil5 Device Database 灰色问题

    使用 keil5 安装 GD 软件包后打开工程依然无法搜索到对应的芯片型号 GD32F450 The Project references device files or libraries that are not installed D
  • Keil警告和错误语句与消除方法笔记

    遇到的keil相关错误 警告内容在这里进行更新 Warning 1 D last line of file ends without a newline 文件最后一行不是新行 解决 保证文件最后一行什么符号也没有 167 D argumen
  • 【单片机】keil和Proteus使用教程

    需要云服务器等云产品来学习Linux的同学可以移步 gt 腾讯云 lt gt 阿里云 lt gt 华为云 lt 官网 轻量型云服务器低至112元 年 新用户首次下单享超低折扣 目录 一 kei
  • Keil注释中的中文字体乱码解决方法

    1 刚刚安装好keil发现选中keil的注释部分会乱码 而且修改注释也会出现莫名的乱文 2 在edit configuration中 Editor Encoding改为Chinese GB2312即可 需要将乱码删掉 重新输入就不会出现乱码
  • 如何确定嵌入式系统中的最大堆栈使用率?

    当我给Keil编译器 callgraph 选项时 它为我静态计算准确的 最大堆栈使用量 唉 今天它给了我一条 最大堆栈使用量 284 字节 未知 没有堆栈大小的函数 消息 以及 没有堆栈信息的函数 列表 Nigel Jones 表示递归在嵌
  • Push_back() 导致程序在进入 main() 之前停止

    我正在为我的 STM32F3 Discovery 板使用 C 进行开发 并使用 std deque 作为队列 在尝试调试我的代码 直接在带有 ST link 的设备上或在模拟器中 后 代码最终在 main 中输入我的代码之前在断点处停止 然

随机推荐

  • 你和高手的差距,就在一念之间

    我一直做软件开发和技术管理工作 xff0c 虽然在做联合创始人期间也参与2B的市场销售运营等众多事情 xff0c 但2C的电商卖货这件事从未体验过 想起小学时学的小马过河的故事 xff0c 要想知道怎么做 xff0c 不能只听别人的说法 x
  • 如何看待2022届秋招嵌入式开发岗位薪资大涨?

    转载于无际 xff1a http t csdn cn ZSlSW 大家好 xff0c 我是无际 最近在网上看到了关于2022届嵌入式开发岗位薪资大涨的帖子 xff0c 比如说像海康 大华 汇顶 联发科等公司的招聘 普遍年薪达到25W xff
  • 电子工程师是怎样的成长之路?

    转载于无际 xff1a https blog csdn net weixin 43982452 article details 121535177 spm 61 1001 2014 3001 5502 10年前 xff0c 我就是通过智能小
  • 单片机怎么做定时器矩阵,彻底解决各种定时问题?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120555258 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 定时功能非常
  • 为什么我学51单片机很顺利,学STM32却一头雾水?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120515134 spm 61 1001 2014 3001 5502 五年懂行 xff0c 十年称王 当初自学转
  • 物联网专业真的把人坑惨了?浅谈物联网的未来发展趋势和未来方向

    转载于 xff1a https blog csdn net weixin 43982452 article details 120200879 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 从事10年单
  • STM32单片机跑RTOS会比裸机有优势吗?

    转载于无际 xff1a https blog csdn net weixin 43982452 article details 115139030 spm 61 1001 2014 3001 5502 在工作中总是能碰到通过秀技术来满足虚荣
  • 如何快速学会别人的代码和思维

    转载于 xff1a https blog csdn net weixin 43982452 article details 120700863 spm 61 1001 2014 3001 5502 大家好 xff0c 我是无际 也有很多天没
  • 单片机和嵌入式哪个好?单片机会被嵌入式取代吗?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120062206 spm 61 1001 2014 3001 5502 很多初学者都搞不清楚单片机和嵌入式的区别
  • 怎么看懂别人写的单片机项目代码?

    转载于 xff1a https blog csdn net weixin 43982452 article details 120049443 spm 61 1001 2014 3001 5502 记得刚开始接触代码的时候 xff0c 总觉
  • 嵌入式单片机产品开发设计框架

    转载于 xff1a https blog csdn net weixin 43982452 article details 119616145 spm 61 1001 2014 3001 5502 老板突然要给你一个新的需求 xff0c 要
  • 8大话题,解惑企业数字化

    从IT到DT xff0c 从信息化到数字化 xff0c 这个观念已经毋庸置疑 xff0c 但是 xff0c 这条路却缺少参照 xff0c 暗夜前行 xff0c 全靠摸索 关于数字化 xff0c 肯定不是上马一些OA工具 购买一些营销工具就行
  • ARINC 429总线学习资料?

    Hello xff0c 我是小熊coder xff0c 方向是嵌入式AI xff0c 后端开发 我的主页 xff1a Home xff0c 欢迎互相关注 xff0c 互相学习 最近在网上寻找关于ARINC 429总线的资料时 xff0c 发
  • 周期任务框架在裸机、RTOS上的实现

    周期任务框架在裸机 RTOS上的实现 一 任务的类型 运行的程序 xff0c 有响应指令的触发式程序 xff0c 也有一直运行的守护程序 xff0c 周期程序 贴别是在单片机 嵌入式领域 xff0c 大部分程序都是周期性的执行 xff0c
  • CAN通讯实验

    前面我们讲解了CAN总线的一些基础知识 xff0c 文章链接 xff1a 一口气从零读懂CAN总线以及应用 了解完之后 xff0c 我们也需要来用一用CAN总线 这篇文章就是主要讲解在STM32中怎么使用CAN总线
  • 航空机载总线网络概述

    1 机载总线网络概述 现代战斗机的航空电子系统是航空电子技术经历了半个多世纪的漫长演变和不断进步的结果 航空电子系统结构的每次变化 xff0c 其核心的机载总线网络技术也不断跨上新台阶 xff0c 而且每次变革都能使飞机性能得到大幅提升 现
  • 【C/C++开源库】单片机/嵌入式中的C语言日志库

    日志系统在系统开发和调整过程中的重要性 xff0c 大家应该都清楚 xff0c 特别是项目出问题之后 xff0c 却没有日志可以帮忙定位问题 xff0c 就非常令人痛苦 因为我们不可能一直通过调试器去单步调试程序 xff0c 所以设备的运行
  • 稚晖君软件硬件开发环境总结

    0 引言 这两天在bilibili上发现一个宝藏up主 xff0c 稚晖君 啧啧啧 xff0c 很厉害 虽然年龄不大 xff0c 但是真全栈 xff0c 从产品到机械到电路到软件 xff0c 这就是那种真的聪明 xff0c 一学就会的高智商
  • 一文弄清51、STM32、Linux点灯的区别

    嵌入式初学者入门的第一个 项目 就是LED点灯 xff0c 那么 xff0c 本文带你看看51 STM32 Linux点灯有什么区别 xff1f 51点灯 51点灯 xff0c 是很多单片机初学者的首选 xff0c 难度也是相对比较低的 准
  • Keil 模拟器 STM32F103 上手指南

    一般嵌入式操作系统因为它的特殊性 xff0c 往往和硬件平台密切相关连 xff0c 具体的嵌入式操作系统往往只能在特定的硬件上运行 对于刚接触 RT Thread 操作系统的读者并不容易马上就获得一个和 RT Thread 操作系统相配套的