java多线程详解

2023-05-16

文章目录

    • 多线程基础
      • 进程
      • 进程 vs 线程
      • 多线程
    • 创建新线程
      • 线程的优先级
      • 练习
      • 小结
    • 线程的状态
      • 小结
    • 中断线程
      • 小结
    • 守护线程
      • 练习
      • 小结
    • 线程同步
      • 不需要synchronized的操作
      • 小结
    • 同步方法
      • 小结
    • 死锁
      • 死锁
      • 练习
      • 小结

转载于:https://www.liaoxuefeng.com/wiki/1252599548343744/1266265175882464


多线程基础

现代操作系统(Windows,macOS,Linux)都可以执行多任务。多任务就是同时运行多个任务。

CPU执行代码都是一条一条顺序执行的,但是,即使是单核cpu,也可以同时运行多个任务。因为操作系统执行多任务实际上就是让CPU对多个任务轮流交替执行。

例如,假设我们有语文、数学、英语3门作业要做,每个作业需要30分钟。我们把这3门作业看成是3个任务,可以做1分钟语文作业,再做1分钟数学作业,再做1分钟英语作业:

fast

这样轮流做下去,在某些人眼里看来,做作业的速度就非常快,看上去就像同时在做3门作业一样

ooops

类似的,操作系统轮流让多个任务交替执行,例如,让浏览器执行0.001秒,让QQ执行0.001秒,再让音乐播放器执行0.001秒,在人看来,CPU就是在同时执行多个任务。

即使是多核CPU,因为通常任务的数量远远多于CPU的核数,所以任务也是交替执行的。

进程

在计算机中,我们把一个任务称为一个进程,浏览器就是一个进程,视频播放器是另一个进程,类似的,音乐播放器和Word都是进程。

某些进程内部还需要同时执行多个子任务。例如,我们在使用Word时,Word可以让我们一边打字,一边进行拼写检查,同时还可以在后台进行打印,我们把子任务称为线程。

进程和线程的关系就是:一个进程可以包含一个或多个线程,但至少会有一个线程。

                        ┌──────────┐
                        │Process   │
                        │┌────────┐│
            ┌──────────┐││ Thread ││┌──────────┐
            │Process   ││└────────┘││Process   │
            │┌────────┐││┌────────┐││┌────────┐│
┌──────────┐││ Thread ││││ Thread ││││ Thread ││
│Process   ││└────────┘││└────────┘││└────────┘│
│┌────────┐││┌────────┐││┌────────┐││┌────────┐│
││ Thread ││││ Thread ││││ Thread ││││ Thread ││
│└────────┘││└────────┘││└────────┘││└────────┘│
└──────────┘└──────────┘└──────────┘└──────────┘
┌──────────────────────────────────────────────┐
│               Operating System               │
└──────────────────────────────────────────────┘

操作系统调度的最小任务单位其实不是进程,而是线程。常用的Windows、Linux等操作系统都采用抢占式多任务,如何调度线程完全由操作系统决定,程序自己不能决定什么时候执行,以及执行多长时间。

因为同一个应用程序,既可以有多个进程,也可以有多个线程,因此,实现多任务的方法,有以下几种:

多进程模式(每个进程只有一个线程):

┌──────────┐ ┌──────────┐ ┌──────────┐
│Process   │ │Process   │ │Process   │
│┌────────┐│ │┌────────┐│ │┌────────┐│
││ Thread ││ ││ Thread ││ ││ Thread ││
│└────────┘│ │└────────┘│ │└────────┘│
└──────────┘ └──────────┘ └──────────┘

多线程模式(一个进程有多个线程):

┌────────────────────┐
│Process             │
│┌────────┐┌────────┐│
││ Thread ││ Thread ││
│└────────┘└────────┘│
│┌────────┐┌────────┐│
││ Thread ││ Thread ││
│└────────┘└────────┘│
└────────────────────┘

多进程+多线程模式(复杂度最高):

┌──────────┐┌──────────┐┌──────────┐
│Process   ││Process   ││Process   │
│┌────────┐││┌────────┐││┌────────┐│
││ Thread ││││ Thread ││││ Thread ││
│└────────┘││└────────┘││└────────┘│
│┌────────┐││┌────────┐││┌────────┐│
││ Thread ││││ Thread ││││ Thread ││
│└────────┘││└────────┘││└────────┘│
└──────────┘└──────────┘└──────────┘

进程 vs 线程

进程和线程是包含关系,但是多任务既可以由多进程实现,也可以由单进程内的多线程实现,还可以混合多进程+多线程。

具体采用哪种方式,要考虑到进程和线程的特点。

和多线程相比,多进程的缺点在于:

  • 创建进程比创建线程开销大,尤其是在Windows系统上;
  • 进程间通信比线程间通信要慢,因为线程间通信就是读写同一个变量,速度很快。

而多进程的优点在于:

多进程稳定性比多线程高,因为在多进程的情况下,一个进程崩溃不会影响其他进程,而在多线程的情况下,任何一个线程崩溃会直接导致整个进程崩溃。

多线程

Java语言内置了多线程支持:一个Java程序实际上是一个JVM进程,JVM进程用一个主线程来执行main()方法,在main()方法内部,我们又可以启动多个线程。此外,JVM还有负责垃圾回收的其他工作线程等。

因此,对于大多数Java程序来说,我们说多任务,实际上是说如何使用多线程实现多任务。

和单线程相比,多线程编程的特点在于:多线程经常需要读写共享数据,并且需要同步。例如,播放电影时,就必须由一个线程播放视频,另一个线程播放音频,两个线程需要协调运行,否则画面和声音就不同步。因此,多线程编程的复杂度高,调试更困难。

Java多线程编程的特点又在于:

  • 多线程模型是Java程序最基本的并发模型;
  • 后续读写网络、数据库、Web开发等都依赖Java多线程模型。

因此,必须掌握Java多线程编程才能继续深入学习其他内容。


创建新线程

Java语言内置了多线程支持。当Java程序启动的时候,实际上是启动了一个JVM进程,然后,JVM启动主线程来执行main()方法。在main()方法中,我们又可以启动其他线程。

要创建一个新线程非常容易,我们需要实例化一个Thread实例,然后调用它的start()方法:

// 多线程 Run

public class Main {
    public static void main(String[] args) {
        Thread t = new Thread();
        t.start(); // 启动新线程
    }
}

但是这个线程启动后实际上什么也不做就立刻结束了。我们希望新线程能执行指定的代码,有以下几种方法:

方法一:从Thread派生一个自定义类,然后覆写run()方法:

// 多线程 Run

public class Main {
    public static void main(String[] args) {
        Thread t = new MyThread();
        t.start(); // 启动新线程
    }
}

class MyThread extends Thread {
    @Override
    public void run() {
        System.out.println("start new thread!");
    }
}

执行上述代码,注意到start()方法会在内部自动调用实例的run()方法。

方法二:创建Thread实例时,传入一个Runnable实例:

// 多线程 Run

public class Main {
    public static void main(String[] args) {
        Thread t = new Thread(new MyRunnable());
        t.start(); // 启动新线程
    }
}

class MyRunnable implements Runnable {
    @Override
    public void run() {
        System.out.println("start new thread!");
    }
}

或者用Java8引入的lambda语法进一步简写为:

// 多线程 Run

public class Main {
    public static void main(String[] args) {
        Thread t = new Thread(() -> {
            System.out.println("start new thread!");
        });
        t.start(); // 启动新线程
    }
}

有童鞋会问,使用线程执行的打印语句,和直接在main()方法执行有区别吗?

区别大了去了。我们看以下代码:

public class Main {
    public static void main(String[] args) {
        System.out.println("main start...");
        Thread t = new Thread() {
            public void run() {
                System.out.println("thread run...");
                System.out.println("thread end.");
            }
        };
        t.start();
        System.out.println("main end...");
    }
}

我们用蓝色表示主线程,也就是main线程,main线程执行的代码有4行,首先打印main start,然后创建Thread对象,紧接着调用start()启动新线程。当start()方法被调用时,JVM就创建了一个新线程,我们通过实例变量t来表示这个新线程对象,并开始执行。

接着,main线程继续执行打印main end语句,而t线程在main线程执行的同时会并发执行,打印thread runthread end语句。

run()方法结束时,新线程就结束了。而main()方法结束时,主线程也结束了。

我们再来看线程的执行顺序:

  1. main线程肯定是先打印main start,再打印main end
  2. t线程肯定是先打印thread run,再打印thread end

但是,除了可以肯定,main start会先打印外,main end打印在thread run之前、thread end之后或者之间,都无法确定。因为从t线程开始运行以后,两个线程就开始同时运行了,并且由操作系统调度,程序本身无法确定线程的调度顺序。

要模拟并发执行的效果,我们可以在线程中调用Thread.sleep(),强迫当前线程暂停一段时间:

// 多线程 Run

public class Main {
    public static void main(String[] args) {
        System.out.println("main start...");
        Thread t = new Thread() {
            public void run() {
                System.out.println("thread run...");
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {}
                System.out.println("thread end.");
            }
        };
        t.start();
        try {
            Thread.sleep(20);
        } catch (InterruptedException e) {}
        System.out.println("main end...");
    }
}

sleep()传入的参数是毫秒。调整暂停时间的大小,我们可以看到main线程和t线程执行的先后顺序。

要特别注意:直接调用Thread实例的run()方法是无效的:

public class Main {
    public static void main(String[] args) {
        Thread t = new MyThread();
        t.run();
    }
}

class MyThread extends Thread {
    public void run() {
        System.out.println("hello");
    }
}

直接调用run()方法,相当于调用了一个普通的Java方法,当前线程并没有任何改变,也不会启动新线程。上述代码实际上是在main()方法内部又调用了run()方法,打印hello语句是在main线程中执行的,没有任何新线程被创建。

必须调用Thread实例的start()方法才能启动新线程,如果我们查看Thread类的源代码,会看到start()方法内部调用了一个private native void start0()方法,native修饰符表示这个方法是由JVM虚拟机内部的C代码实现的,不是由Java代码实现的。

线程的优先级

可以对线程设定优先级,设定优先级的方法是:

Thread.setPriority(int n) // 1~10, 默认值5

优先级高的线程被操作系统调度的优先级较高,操作系统对高优先级线程可能调度更频繁,但我们决不能通过设置优先级来确保高优先级的线程一定会先执行。

练习

从[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LiunirUz-1640516280422)()]下载练习:创建新线程 (推荐使用IDE练习插件快速下载)

小结

Java用Thread对象表示一个线程,通过调用start()启动一个新线程;

一个线程对象只能调用一次start()方法;

线程的执行代码写在run()方法中;

线程调度由操作系统决定,程序本身无法决定调度顺序;

Thread.sleep()可以把当前线程暂停一段时间。


线程的状态

在Java程序中,一个线程对象只能调用一次start()方法启动新线程,并在新线程中执行run()方法。一旦run()方法执行完毕,线程就结束了。因此,Java线程的状态有以下几种:

  • New:新创建的线程,尚未执行;
  • Runnable:运行中的线程,正在执行run()方法的Java代码;
  • Blocked:运行中的线程,因为某些操作被阻塞而挂起;
  • Waiting:运行中的线程,因为某些操作在等待中;
  • Timed Waiting:运行中的线程,因为执行sleep()方法正在计时等待;
  • Terminated:线程已终止,因为run()方法执行完毕。

用一个状态转移图表示如下:

         ┌─────────────┐
         │     New     │
         └─────────────┘
                │
                ▼
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
 ┌─────────────┐ ┌─────────────┐
││  Runnable   │ │   Blocked   ││
 └─────────────┘ └─────────────┘
│┌─────────────┐ ┌─────────────┐│
 │   Waiting   │ │Timed Waiting│
│└─────────────┘ └─────────────┘│
 ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
                │
                ▼
         ┌─────────────┐
         │ Terminated  │
         └─────────────┘

当线程启动后,它可以在RunnableBlockedWaitingTimed Waiting这几个状态之间切换,直到最后变成Terminated状态,线程终止。

线程终止的原因有:

  • 线程正常终止:run()方法执行到return语句返回;
  • 线程意外终止:run()方法因为未捕获的异常导致线程终止;
  • 对某个线程的Thread实例调用stop()方法强制终止(强烈不推荐使用)。

一个线程还可以等待另一个线程直到其运行结束。例如,main线程在启动t线程后,可以通过t.join()等待t线程结束后再继续运行:

// 多线程 Run

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Thread t = new Thread(() -> {
            System.out.println("hello");
        });
        System.out.println("start");
        t.start();
        t.join();
        System.out.println("end");
    }
}

main线程对线程对象t调用join()方法时,主线程将等待变量t表示的线程运行结束,即join就是指等待该线程结束,然后才继续往下执行自身线程。所以,上述代码打印顺序可以肯定是main线程先打印startt线程再打印hellomain线程最后再打印end

如果t线程已经结束,对实例t调用join()会立刻返回。此外,join(long)的重载方法也可以指定一个等待时间,超过等待时间后就不再继续等待。

小结

Java线程对象Thread的状态包括:NewRunnableBlockedWaitingTimed WaitingTerminated

通过对另一个线程对象调用join()方法可以等待其执行结束;

可以指定等待时间,超过等待时间线程仍然没有结束就不再等待;

对已经运行结束的线程调用join()方法会立刻返回。


中断线程

如果线程需要执行一个长时间任务,就可能需要能中断线程。中断线程就是其他线程给该线程发一个信号,该线程收到信号后结束执行run()方法,使得自身线程能立刻结束运行。

我们举个栗子:假设从网络下载一个100M的文件,如果网速很慢,用户等得不耐烦,就可能在下载过程中点“取消”,这时,程序就需要中断下载线程的执行。

中断一个线程非常简单,只需要在其他线程中对目标线程调用interrupt()方法,目标线程需要反复检测自身状态是否是interrupted状态,如果是,就立刻结束运行。

我们还是看示例代码:

// 中断线程 Run

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Thread t = new MyThread();
        t.start();
        Thread.sleep(1); // 暂停1毫秒
        t.interrupt(); // 中断t线程
        t.join(); // 等待t线程结束
        System.out.println("end");
    }
}

class MyThread extends Thread {
    public void run() {
        int n = 0;
        while (! isInterrupted()) {
            n ++;
            System.out.println(n + " hello!");
        }
    }
}

仔细看上述代码,main线程通过调用t.interrupt()方法中断t线程,但是要注意,interrupt()方法仅仅向t线程发出了“中断请求”,至于t线程是否能立刻响应,要看具体代码。而t线程的while循环会检测isInterrupted(),所以上述代码能正确响应interrupt()请求,使得自身立刻结束运行run()方法。

如果线程处于等待状态,例如,t.join()会让main线程进入等待状态,此时,如果对main线程调用interrupt()join()方法会立刻抛出InterruptedException,因此,目标线程只要捕获到join()方法抛出的InterruptedException,就说明有其他线程对其调用了interrupt()方法,通常情况下该线程应该立刻结束运行。

我们来看下面的示例代码:

// 中断线程 Run

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Thread t = new MyThread();
        t.start();
        Thread.sleep(1000);
        t.interrupt(); // 中断t线程
        t.join(); // 等待t线程结束
        System.out.println("end");
    }
}

class MyThread extends Thread {
    public void run() {
        Thread hello = new HelloThread();
        hello.start(); // 启动hello线程
        try {
            hello.join(); // 等待hello线程结束
        } catch (InterruptedException e) {
            System.out.println("interrupted!");
        }
        hello.interrupt();
    }
}

class HelloThread extends Thread {
    public void run() {
        int n = 0;
        while (!isInterrupted()) {
            n++;
            System.out.println(n + " hello!");
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                break;
            }
        }
    }
}

main线程通过调用t.interrupt()从而通知t线程中断,而此时t线程正位于hello.join()的等待中,此方法会立刻结束等待并抛出InterruptedException。由于我们在t线程中捕获了InterruptedException,因此,就可以准备结束该线程。在t线程结束前,对hello线程也进行了interrupt()调用通知其中断。如果去掉这一行代码,可以发现hello线程仍然会继续运行,且JVM不会退出。

另一个常用的中断线程的方法是设置标志位。我们通常会用一个running标志位来标识线程是否应该继续运行,在外部线程中,通过把HelloThread.running置为false,就可以让线程结束:

// 中断线程 Run

public class Main {
    public static void main(String[] args)  throws InterruptedException {
        HelloThread t = new HelloThread();
        t.start();
        Thread.sleep(1);
        t.running = false; // 标志位置为false
    }
}

class HelloThread extends Thread {
    public volatile boolean running = true;
    public void run() {
        int n = 0;
        while (running) {
            n ++;
            System.out.println(n + " hello!");
        }
        System.out.println("end!");
    }
}

注意到HelloThread的标志位boolean running是一个线程间共享的变量。线程间共享变量需要使用volatile关键字标记,确保每个线程都能读取到更新后的变量值。

为什么要对线程间共享的变量用关键字volatile声明?这涉及到Java的内存模型。在Java虚拟机中,变量的值保存在主内存中,但是,当线程访问变量时,它会先获取一个副本,并保存在自己的工作内存中。如果线程修改了变量的值,虚拟机会在某个时刻把修改后的值回写到主内存,但是,这个时间是不确定的!

┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
           Main Memory
│                               │
   ┌───────┐┌───────┐┌───────┐
│  │ var A ││ var B ││ var C │  │
   └───────┘└───────┘└───────┘
│     │ ▲               │ ▲     │
 ─ ─ ─│─│─ ─ ─ ─ ─ ─ ─ ─│─│─ ─ ─
      │ │               │ │
┌ ─ ─ ┼ ┼ ─ ─ ┐   ┌ ─ ─ ┼ ┼ ─ ─ ┐
      ▼ │               ▼ │
│  ┌───────┐  │   │  ┌───────┐  │
   │ var A │         │ var C │
│  └───────┘  │   │  └───────┘  │
   Thread 1          Thread 2
└ ─ ─ ─ ─ ─ ─ ┘   └ ─ ─ ─ ─ ─ ─ ┘

这会导致如果一个线程更新了某个变量,另一个线程读取的值可能还是更新前的。例如,主内存的变量a = true,线程1执行a = false时,它在此刻仅仅是把变量a的副本变成了false,主内存的变量a还是true,在JVM把修改后的a回写到主内存之前,其他线程读取到的a的值仍然是true,这就造成了多线程之间共享的变量不一致。

因此,volatile关键字的目的是告诉虚拟机:

  • 每次访问变量时,总是获取主内存的最新值;
  • 每次修改变量后,立刻回写到主内存。

volatile关键字解决的是可见性问题:当一个线程修改了某个共享变量的值,其他线程能够立刻看到修改后的值。

如果我们去掉volatile关键字,运行上述程序,发现效果和带volatile差不多,这是因为在x86的架构下,JVM回写主内存的速度非常快,但是,换成ARM的架构,就会有显著的延迟。

小结

对目标线程调用interrupt()方法可以请求中断一个线程,目标线程通过检测isInterrupted()标志获取自身是否已中断。如果目标线程处于等待状态,该线程会捕获到InterruptedException

目标线程检测到isInterrupted()true或者捕获了InterruptedException都应该立刻结束自身线程;

通过标志位判断需要正确使用volatile关键字;

volatile关键字解决了共享变量在线程间的可见性问题。


守护线程

Java程序入口就是由JVM启动main线程,main线程又可以启动其他线程。当所有线程都运行结束时,JVM退出,进程结束。

如果有一个线程没有退出,JVM进程就不会退出。所以,必须保证所有线程都能及时结束。

但是有一种线程的目的就是无限循环,例如,一个定时触发任务的线程:

class TimerThread extends Thread {
    @Override
    public void run() {
        while (true) {
            System.out.println(LocalTime.now());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                break;
            }
        }
    }
}

如果这个线程不结束,JVM进程就无法结束。问题是,由谁负责结束这个线程?

然而这类线程经常没有负责人来负责结束它们。但是,当其他线程结束时,JVM进程又必须要结束,怎么办?

答案是使用守护线程(Daemon Thread)。

守护线程是指为其他线程服务的线程。在JVM中,所有非守护线程都执行完毕后,无论有没有守护线程,虚拟机都会自动退出。

因此,JVM退出时,不必关心守护线程是否已结束。

如何创建守护线程呢?方法和普通线程一样,只是在调用start()方法前,调用setDaemon(true)把该线程标记为守护线程:

Thread t = new MyThread();
t.setDaemon(true);
t.start();

在守护线程中,编写代码要注意:守护线程不能持有任何需要关闭的资源,例如打开文件等,因为虚拟机退出时,守护线程没有任何机会来关闭文件,这会导致数据丢失。

练习

从[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b30HBfgd-1640516280422)()]下载练习:使用守护线程 (推荐使用IDE练习插件快速下载)

小结

守护线程是为其他线程服务的线程;

所有非守护线程都执行完毕后,虚拟机退出;

守护线程不能持有需要关闭的资源(如打开文件等)。


线程同步

当多个线程同时运行时,线程的调度由操作系统决定,程序本身无法决定。因此,任何一个线程都有可能在任何指令处被操作系统暂停,然后在某个时间段后继续执行。

这个时候,有个单线程模型下不存在的问题就来了:如果多个线程同时读写共享变量,会出现数据不一致的问题。

我们来看一个例子:

// 多线程 Run

public class Main {
    public static void main(String[] args) throws Exception {
        var add = new AddThread();
        var dec = new DecThread();
        add.start();
        dec.start();
        add.join();
        dec.join();
        System.out.println(Counter.count);
    }
}

class Counter {
    public static int count = 0;
}

class AddThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) { Counter.count += 1; }
    }
}

class DecThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) { Counter.count -= 1; }
    }
}

上面的代码很简单,两个线程同时对一个int变量进行操作,一个加10000次,一个减10000次,最后结果应该是0,但是,每次运行,结果实际上都是不一样的。

这是因为对变量进行读取和写入时,结果要正确,必须保证是原子操作。原子操作是指不能被中断的一个或一系列操作。

例如,对于语句:

n = n + 1;

看上去是一行语句,实际上对应了3条指令:

ILOAD
IADD
ISTORE

我们假设n的值是100,如果两个线程同时执行n = n + 1,得到的结果很可能不是102,而是101,原因在于:

┌───────┐    ┌───────┐
│Thread1│    │Thread2│
└───┬───┘    └───┬───┘
    │            │
    │ILOAD (100) │
    │            │ILOAD (100)
    │            │IADD
    │            │ISTORE (101)
    │IADD        │
    │ISTORE (101)│
    ▼            ▼

如果线程1在执行ILOAD后被操作系统中断,此刻如果线程2被调度执行,它执行ILOAD后获取的值仍然是100,最终结果被两个线程的ISTORE写入后变成了101,而不是期待的102

这说明多线程模型下,要保证逻辑正确,对共享变量进行读写时,必须保证一组指令以原子方式执行:即某一个线程执行时,其他线程必须等待:

┌───────┐     ┌───────┐
│Thread1│     │Thread2│
└───┬───┘     └───┬───┘
    │             │
    │-- lock --   │
    │ILOAD (100)  │
    │IADD         │
    │ISTORE (101) │
    │-- unlock -- │
    │             │-- lock --
    │             │ILOAD (101)
    │             │IADD
    │             │ISTORE (102)
    │             │-- unlock --
    ▼             ▼

通过加锁和解锁的操作,就能保证3条指令总是在一个线程执行期间,不会有其他线程会进入此指令区间。即使在执行期线程被操作系统中断执行,其他线程也会因为无法获得锁导致无法进入此指令区间。只有执行线程将锁释放后,其他线程才有机会获得锁并执行。这种加锁和解锁之间的代码块我们称之为临界区(Critical Section),任何时候临界区最多只有一个线程能执行。

可见,保证一段代码的原子性就是通过加锁和解锁实现的。Java程序使用synchronized关键字对一个对象进行加锁:

synchronized(lock) {
    n = n + 1;
}

synchronized保证了代码块在任意时刻最多只有一个线程能执行。我们把上面的代码用synchronized改写如下:

// 多线程 Run

public class Main {
    public static void main(String[] args) throws Exception {
        var add = new AddThread();
        var dec = new DecThread();
        add.start();
        dec.start();
        add.join();
        dec.join();
        System.out.println(Counter.count);
    }
}

class Counter {
    public static final Object lock = new Object();
    public static int count = 0;
}

class AddThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.count += 1;
            }
        }
    }
}

class DecThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.count -= 1;
            }
        }
    }
}

注意到代码:

synchronized(Counter.lock) { // 获取锁
    ...
} // 释放锁

它表示用Counter.lock实例作为锁,两个线程在执行各自的synchronized(Counter.lock) { ... }代码块时,必须先获得锁,才能进入代码块进行。执行结束后,在synchronized语句块结束会自动释放锁。这样一来,对Counter.count变量进行读写就不可能同时进行。上述代码无论运行多少次,最终结果都是0。

使用synchronized解决了多线程同步访问共享变量的正确性问题。但是,它的缺点是带来了性能下降。因为synchronized代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized会降低程序的执行效率。

我们来概括一下如何使用synchronized

  1. 找出修改共享变量的线程代码块;
  2. 选择一个共享实例作为锁;
  3. 使用synchronized(lockObject) { ... }

在使用synchronized的时候,不必担心抛出异常。因为无论是否有异常,都会在synchronized结束处正确释放锁:

public void add(int m) {
    synchronized (obj) {
        if (m < 0) {
            throw new RuntimeException();
        }
        this.value += m;
    } // 无论有无异常,都会在此释放锁
}

我们再来看一个错误使用synchronized的例子:

// 多线程 Run

public class Main {
    public static void main(String[] args) throws Exception {
        var add = new AddThread();
        var dec = new DecThread();
        add.start();
        dec.start();
        add.join();
        dec.join();
        System.out.println(Counter.count);
    }
}

class Counter {
    public static final Object lock1 = new Object();
    public static final Object lock2 = new Object();
    public static int count = 0;
}

class AddThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock1) {
                Counter.count += 1;
            }
        }
    }
}

class DecThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock2) {
                Counter.count -= 1;
            }
        }
    }
}

结果并不是0,这是因为两个线程各自的synchronized锁住的不是同一个对象!这使得两个线程各自都可以同时获得锁:因为JVM只保证同一个锁在任意时刻只能被一个线程获取,但两个不同的锁在同一时刻可以被两个线程分别获取。

因此,使用synchronized的时候,获取到的是哪个锁非常重要。锁对象如果不对,代码逻辑就不对。

我们再看一个例子:

// 多线程 Run

public class Main {
    public static void main(String[] args) throws Exception {
        var ts = new Thread[] { new AddStudentThread(), new DecStudentThread(), new AddTeacherThread(), new DecTeacherThread() };
        for (var t : ts) {
            t.start();
        }
        for (var t : ts) {
            t.join();
        }
        System.out.println(Counter.studentCount);
        System.out.println(Counter.teacherCount);
    }
}

class Counter {
    public static final Object lock = new Object();
    public static int studentCount = 0;
    public static int teacherCount = 0;
}

class AddStudentThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.studentCount += 1;
            }
        }
    }
}

class DecStudentThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.studentCount -= 1;
            }
        }
    }
}

class AddTeacherThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.teacherCount += 1;
            }
        }
    }
}

class DecTeacherThread extends Thread {
    public void run() {
        for (int i=0; i<10000; i++) {
            synchronized(Counter.lock) {
                Counter.teacherCount -= 1;
            }
        }
    }
}

上述代码的4个线程对两个共享变量分别进行读写操作,但是使用的锁都是Counter.lock这一个对象,这就造成了原本可以并发执行的Counter.studentCount += 1Counter.teacherCount += 1,现在无法并发执行了,执行效率大大降低。实际上,需要同步的线程可以分成两组:AddStudentThreadDecStudentThreadAddTeacherThreadDecTeacherThread,组之间不存在竞争,因此,应该使用两个不同的锁,即:

AddStudentThreadDecStudentThread使用lockStudent锁:

synchronized(Counter.lockStudent) {
    ...
}

AddTeacherThreadDecTeacherThread使用lockTeacher锁:

synchronized(Counter.lockTeacher) {
    ...
}

这样才能最大化地提高执行效率。

不需要synchronized的操作

JVM规范定义了几种原子操作:

  • 基本类型(longdouble除外)赋值,例如:int n = m
  • 引用类型赋值,例如:List<String> list = anotherList

longdouble是64位数据,JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把longdouble的赋值作为原子操作实现的。

单条原子操作的语句不需要同步。例如:

public void set(int m) {
    synchronized(lock) {
        this.value = m;
    }
}

就不需要同步。

对引用也是类似。例如:

public void set(String s) {
    this.value = s;
}

上述赋值语句并不需要同步。

但是,如果是多行赋值语句,就必须保证是同步操作,例如:

class Pair {
    int first;
    int last;
    public void set(int first, int last) {
        synchronized(this) {
            this.first = first;
            this.last = last;
        }
    }
}

有些时候,通过一些巧妙的转换,可以把非原子操作变为原子操作。例如,上述代码如果改造成:

class Pair {
    int[] pair;
    public void set(int first, int last) {
        int[] ps = new int[] { first, last };
        this.pair = ps;
    }
}

就不再需要同步,因为this.pair = ps是引用赋值的原子操作。而语句:

int[] ps = new int[] { first, last };

这里的ps是方法内部定义的局部变量,每个线程都会有各自的局部变量,互不影响,并且互不可见,并不需要同步。

小结

多线程同时读写共享变量时,会造成逻辑错误,因此需要通过synchronized同步;

同步的本质就是给指定对象加锁,加锁后才能继续执行后续代码;

注意加锁对象必须是同一个实例;

对JVM定义的单个原子操作不需要同步。


同步方法

我们知道Java程序依靠synchronized对线程进行同步,使用synchronized的时候,锁住的是哪个对象非常重要。

让线程自己选择锁对象往往会使得代码逻辑混乱,也不利于封装。更好的方法是把synchronized逻辑封装起来。例如,我们编写一个计数器如下:

public class Counter {
    private int count = 0;

    public void add(int n) {
        synchronized(this) {
            count += n;
        }
    }

    public void dec(int n) {
        synchronized(this) {
            count -= n;
        }
    }

    public int get() {
        return count;
    }
}

这样一来,线程调用add()dec()方法时,它不必关心同步逻辑,因为synchronized代码块在add()dec()方法内部。并且,我们注意到,synchronized锁住的对象是this,即当前实例,这又使得创建多个Counter实例的时候,它们之间互不影响,可以并发执行:

var c1 = Counter();
var c2 = Counter();

// 对c1进行操作的线程:
new Thread(() -> {
    c1.add();
}).start();
new Thread(() -> {
    c1.dec();
}).start();

// 对c2进行操作的线程:
new Thread(() -> {
    c2.add();
}).start();
new Thread(() -> {
    c2.dec();
}).start();

现在,对于Counter类,多线程可以正确调用。

如果一个类被设计为允许多线程正确访问,我们就说这个类就是“线程安全”的(thread-safe),上面的Counter类就是线程安全的。Java标准库的java.lang.StringBuffer也是线程安全的。

还有一些不变类,例如StringIntegerLocalDate,它们的所有成员变量都是final,多线程同时访问时只能读不能写,这些不变类也是线程安全的。

最后,类似Math这些只提供静态方法,没有成员变量的类,也是线程安全的。

除了上述几种少数情况,大部分类,例如ArrayList,都是非线程安全的类,我们不能在多线程中修改它们。但是,如果所有线程都只读取,不写入,那么ArrayList是可以安全地在线程间共享的。

没有特殊说明时,一个类默认是非线程安全的。

我们再观察Counter的代码:

public class Counter {
    public void add(int n) {
        synchronized(this) {
            count += n;
        }
    }
    ...
}

当我们锁住的是this实例时,实际上可以用synchronized修饰这个方法。下面两种写法是等价的:

public void add(int n) {
    synchronized(this) { // 锁住this
        count += n;
    } // 解锁
}
public synchronized void add(int n) { // 锁住this
    count += n;
} // 解锁

因此,用synchronized修饰的方法就是同步方法,它表示整个方法都必须用this实例加锁。

我们再思考一下,如果对一个静态方法添加synchronized修饰符,它锁住的是哪个对象?

public synchronized static void test(int n) {
    ...
}

对于static方法,是没有this实例的,因为static方法是针对类而不是实例。但是我们注意到任何一个类都有一个由JVM自动创建的Class实例,因此,对static方法添加synchronized,锁住的是该类的Class实例。上述synchronized static方法实际上相当于:

public class Counter {
    public static void test(int n) {
        synchronized(Counter.class) {
            ...
        }
    }
}

我们再考察Counterget()方法:

public class Counter {
    private int count;

    public int get() {
        return count;
    }
    ...
}

它没有同步,因为读一个int变量不需要同步。

然而,如果我们把代码稍微改一下,返回一个包含两个int的对象:

public class Counter {
    private int first;
    private int last;

    public Pair get() {
        Pair p = new Pair();
        p.first = first;
        p.last = last;
        return p;
    }
    ...
}

就必须要同步了。

小结

synchronized修饰方法可以把整个方法变为同步代码块,synchronized方法加锁对象是this

通过合理的设计和数据封装可以让一个类变为“线程安全”;

一个类没有特殊说明,默认不是thread-safe;

多线程能否安全访问某个非线程安全的实例,需要具体问题具体分析。


死锁

Java的线程锁是可重入的锁。

什么是可重入的锁?我们还是来看例子:

public class Counter {
    private int count = 0;

    public synchronized void add(int n) {
        if (n < 0) {
            dec(-n);
        } else {
            count += n;
        }
    }

    public synchronized void dec(int n) {
        count += n;
    }
}

观察synchronized修饰的add()方法,一旦线程执行到add()方法内部,说明它已经获取了当前实例的this锁。如果传入的n < 0,将在add()方法内部调用dec()方法。由于dec()方法也需要获取this锁,现在问题来了:

对同一个线程,能否在获取到锁以后继续获取同一个锁?

答案是肯定的。JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。

由于Java的线程锁是可重入锁,所以,获取锁的时候,不但要判断是否是第一次获取,还要记录这是第几次获取。每获取一次锁,记录+1,每退出synchronized块,记录-1,减到0的时候,才会真正释放锁。

死锁

一个线程可以获取一个锁后,再继续获取另一个锁。例如:

public void add(int m) {
    synchronized(lockA) { // 获得lockA的锁
        this.value += m;
        synchronized(lockB) { // 获得lockB的锁
            this.another += m;
        } // 释放lockB的锁
    } // 释放lockA的锁
}

public void dec(int m) {
    synchronized(lockB) { // 获得lockB的锁
        this.another -= m;
        synchronized(lockA) { // 获得lockA的锁
            this.value -= m;
        } // 释放lockA的锁
    } // 释放lockB的锁
}

在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()dec()方法时:

  • 线程1:进入add(),获得lockA
  • 线程2:进入dec(),获得lockB

随后:

  • 线程1:准备获得lockB,失败,等待中;
  • 线程2:准备获得lockA,失败,等待中。

此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。

死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。

因此,在编写多线程应用时,要特别注意防止死锁。因为死锁一旦形成,就只能强制结束进程。

那么我们应该如何避免死锁呢?答案是:线程获取锁的顺序要一致。即严格按照先获取lockA,再获取lockB的顺序,改写dec()方法如下:

public void dec(int m) {
    synchronized(lockA) { // 获得lockA的锁
        this.value -= m;
        synchronized(lockB) { // 获得lockB的锁
            this.another -= m;
        } // 释放lockB的锁
    } // 释放lockA的锁
}

练习

请观察死锁的代码输出,然后修复。

从[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fJuyXAwN-1640516280423)()]下载练习:死锁 (推荐使用IDE练习插件快速下载)

小结

Java的synchronized锁是可重入锁;

死锁产生的条件是多线程各自持有不同的锁,并互相试图获取对方已持有的锁,导致无限等待;

避免死锁的方法是多线程获取锁的顺序要一致。


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

java多线程详解 的相关文章

  • 【程序员读论文】题外篇:怎么读论文

    文章目录 1 如何高效读论文 xff1f 痛苦选择顺序笔记小结讨论 2 如何有针对地高效地阅读一篇学术论文 xff1f 3 一文教你如何快速高效阅读Paper xff08 硕士生版 xff09 前言Paper从哪来Paper怎么读Paper
  • 【程序员读论文】推荐一款OCR软件,识别PDF论文上的文字

    在我们读论文过程中 xff0c 我们会有将PDF论文中的一些文字复制下来的需求 xff0c 但因为PDF的特殊性 xff0c 要么复制不出来 xff0c 要么复制的有问题 通过OCR软件 xff0c 我们可以通过现在的图形文字识别技术 xf
  • uC/OS-III 的特点

    1 其中最有用的功能应该是时间片轮转法 xff08 roundrobin 这个是 uC OS II 中不支持的 xff0c 但是现在已经是 uC OS III 的一个功能了 2 uC OS III 被设计用于 32 位处理器 xff0c 但
  • ORBSLAM2 文章翻译

    ORBSLAM2 一种适用于单目 双目和RGB D相机的开源slam系统 摘要 本文提出了ORB SLAM2 xff0c 一种适用于单目 双目和RGB D相机的slam系统 xff0c 包含地图重用 xff0c 回环检测 xff0c 重定位
  • 【程序员读论文】LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. *Nature* **521,** 436–444 (2015).

    文章目录 一 先看题目 摘要 结论二 文章主体三 总结 今天要读的论文是深度学习的里程碑之作 xff0c 集齐了三位在深度学习领域举足轻重的人物 论文名称 xff1a LeCun Y Bengio Y amp Hinton G Deep l
  • HTML入门教程(非常详细)

    转载于我最喜欢的C语言中文网 xff1a http c biancheng net view 9395 html 文章目录 网站到底是什么 xff1f 1 什么是网页 xff1f 2 什么是网站 xff1f 1 网站服务器 xff08 Se
  • JSON教程(非常详细)

    之前写过有关C语言JSON库 xff1a C语言开源库 在Clion上使用开源库cJSON JSON和XML的对比 xff1a JSON vs XML xff0c 为什么JSON更好 xff1f 下面就好好来了解一下JSON 文章目录 JS
  • 理清gcc、libc、glibc、libc++、libstdc++的关系

    转载一篇好文 xff1a https www jianshu com p a3c983edabd1 当你在Linux下写C C 43 43 代码的时候 xff0c 是不是会遇到许多编译链接的问题 xff1f 时不时报个glibc gcc x
  • Linux中C语言标准库glibc源码下载

    在这篇文章理清gcc libc glibc libc 43 43 libstdc 43 43 的关系 xff0c 我们大概理解了libc xff0c glibc之间的一些关系 下面我们就开了解一些Linux中C语言标准库glibc源码 在这
  • 记录、总结、复盘的重要性和方法(另有周报、月报、年度总结撰写方法)

    文章目录 一 记录1 记录的分类2 学习记录3 工作记录定义分类作用提醒作用跟踪作用证明作用 写好日志时间维度内容维度感想维度 4 生活记录 二 总结和复盘1 总结2 复盘什么叫做复盘 xff1f 什么时候复盘比较合适 xff1f 怎样进行
  • PPT画图文章总结

    一图抵千言 xff0c 在平常的PPT汇报中 xff0c 一张好的图片可以让我们的展示更加清晰 xff0c 也让听得人更快的了解我们的内容 要想起之前师兄发了文章 xff0c 需要提供一个封面示意图 xff0c 当时好像是花钱请别人做的 x
  • 传统学科怎么和深度学习领域结合

    这篇博客 程序员读论文 LeCun Y Bengio Y amp Hinton G Deep learning Nature 521 436 444 2015 中的论文提到深度学习将在很多行业上有广阔的前景 最近看到毕导的公众号发文菜鸡程序
  • 现在快2022年了,c++为什么还要实现(.cpp)和声明(.h)分开?像 Java 或 C# 都不需要声明头文件,C++ 委员会为什么不解决这个问题?

    链接 xff1a https www zhihu com question 506962663 answer 2278836594 因为 C 43 43 牵扯面更广 xff0c 改起来更麻烦 很多语言其实都有一个事实上的实现标准 xff0c
  • Java程序设计基础

    文章目录 Java标识符和关键字标识符关键字 Java注释 xff1a 单行 多行和文档注释1 xff09 单行注释2 xff09 多行注释3 xff09 文档注释 Javadoc xff08 文档注释 xff09 详解Javadoc标签J
  • 几本对于笔试和面试有用的书(干货~)

    黑客帝国 jpg 这儿放几本对程序员笔试和面试有益的书籍o o the power of coding coder jpg 4本408核心书籍 xff1a 数据结构计算机操作系统计算机网络计算机组成原理 面试宝典 xff1a 程序员面试宝典
  • Java类和对象

    文章目录 本章学习要点 Java面向对象 xff1a 对象的概念及面向对象的三个基本特征对象的概念面向对象的三大核心特性继承性封装性多态性 Java认识类和对象Java类的定义及定义类时可用的关键字例 1 Java类的属性 xff1a 成员
  • Java流程控制语句

    文章目录 Java语句 xff1a Java空语句 复合语句和表达式语句语句编写方式空语句表达式语句复合语句例 1 Java if else分支结构精讲if 结构例 1例 2例 3 if else 结构例 4 多条件 if else if
  • Java数组:针对数组(Array)的各种操作

    文章目录 本章学习要点 Java数组简介 xff1a 数组是什么 xff1f Java一维数组的定义 赋值和初始化创建一维数组分配空间例 1 初始化一维数组1 xff09 使用 new 指定数组大小后进行初始化例 22 xff09 使用 n
  • java中类的main方法总结

    一 java中每个类都需要有main方法吗 xff1f 每个类可以有也可以没有main方法 xff0c 甚至所有类里可以都没有main方法 如果你想从某个类做为入口开始运行整个程序 那么就把他设成 public xff0c 之后再里面写个m
  • java中文件名、类名之间的关系

    1 Java保存的文件名必须与类名一致 xff1b 2 如果文件中只有一个类 xff0c 文件名必须与类名一致 xff1b 3 一个Java文件中只能有一个public类 xff1b 4 如果文件中不止一个类 xff0c 文件名必须与pub

随机推荐

  • Java 包(package)详解

    为了更好地组织类 xff0c Java 提供了包机制 xff0c 用于区别类名的命名空间 包的作用 1 把功能相似或相关的类或接口组织在同一个包中 xff0c 方便类的查找和使用 2 如同文件夹一样 xff0c 包也采用了树形目录的存储方式
  • 软件项目开发流程以及人员职责,软件工程中五种常用的软件开发模型整理

    文章目录 一 软件项目开发流程逻辑图开发流程需求分析概要设计详细设计编码测试软件交付验收维护 软件维护软件升级 软件项目开发流程以及人员职责软件工程中五种常用的软件开发模型整理软件系统开发流程七大详细步骤完整介绍 一 软件项目开发流程逻辑图
  • 如何保持专注

    文章目录 部分 1 做一个井井有条的人部分 2 提高专注力部分 3 在集中期间保持动力 专家建议小提示 转载于 xff1a https zh wikihow com E4 BF 9D E6 8C 81 E4 B8 93 E6 B3 A8 不
  • 让开始学java的我困惑的问题解析

    前面已经对java一些基础概念进行了理解 xff1a Java 包 package 详解 java中文件名 类名之间的关系 java中类的main方法总结 文章目录 一个java文件中可以有多个class xff0c 但是只能有一个是pub
  • Jar包详解

    jar包的一些事儿 关于 JAR 包我们应该知道的s
  • astra 深度相机 + orbslam2 ~ 稠密建图

    在ROS下运行ORB SLAM2 主要包括以下几步 xff1a 一 创建ROS工作空间 二 下载usb cam xff08 单目相机驱动包 xff09 三 下载深度相机驱动包 四 下载ORB SLAM2稠密建图代码 五 运行 一 创建ROS
  • Java字符串的处理

    文章目录 本章学习要点 Java定义字符串 xff08 2种方式 xff09 直接定义字符串例 1 使用 String 类定义1 String 2 String String original 3 String char value 4 S
  • Java数字和日期处理:Java数字处理和日期类

    文章目录 本章学习要点 Java Math类的常用方法静态常量例 1 求最大值 最小值和绝对值例 2 求整运算例 3 三角函数运算例 4 指数运算例 5 Java生成随机数 xff08 random 和Random类 xff09 例 1例
  • Java内置的包装类

    文章目录 本章学习要点 Java包装类 装箱和拆箱装箱和拆箱包装类的应用1 实现 int 和 Integer 的相互转换2 将字符串转换为数值类型3 将整数转换为字符串 Java Object类详解toString 方法equals 方法例
  • Java输入/输出(I/O)流

    文章目录 本章学习要点 Java流是什么 xff1f 输入 输出流又是什么 xff1f 什么是输入 输出流输入流输出流 Java系统流例 1 Java字符编码介绍Java File类 xff08 文件操作类 xff09 详解获取文件属性例
  • Java异常处理

    文章目录 本章学习要点 Java异常 xff08 Exception xff09 处理及常见异常异常简介例 1 异常类型 Java中Error和Exception的异同例 1 Java异常处理机制及异常处理的基本结构Java try cat
  • Java注解

    文章目录 本章学习要点 Java注解 xff08 Annotation xff09 简介Java 64 Override注解Java 64 Deprecated注解Java 64 SuppressWarnings xff1a 抑制编译器警告
  • 如何夸人?

    文章目录 夸人要怎么夸到心坎上 xff1f 01 有理有据 xff0c 细节见诚意02 一如既往保持信任与支持03 由表及里 xff0c 夸TA前先夸自己04 先抑后扬 xff0c 对比式夸奖05 创造条件引导TA自夸 如何做一只舔狗 xf
  • Java继承和多态

    文章目录 本章学习要点 Java类的封装例 1 Java封装图书信息类Java继承 xff08 extends xff09 简明教程例 1 单继承继承的优缺点 Java super关键字详解super调用父类构造方法例1例2 super访问
  • java中接口(interface)详解

    分享记录一下java接口的博客 xff1a java中接口 xff08 interface xff09 详解 JAVA基础 接口 xff08 全网最详细教程 xff09
  • java引用详解

    文章目录 一 关于对象与引用之间的一些基本概念 new Vehicle Vehicle veh1二 Java对象及引用三 只有理解了对象和引用的关系 xff0c 才能理解参数传递总结 xff1a 什么是值传递 xff0c 什么是引用传递 为
  • python学习-def __init__(self)理解(1)

    python中 init 的作用 在python中创建类后 xff0c 通常会创建一个 init 方法 xff0c 这个方法会在创建类的实例的时候自动执行 实例1 实例化Bob这个对象的时候 xff0c init 方法会自动执行 xff1a
  • 学完java基础语法之后用来练习的不依赖框架的小项目

    刚学完一门语言基础语法之后 xff0c 一般都需要写一些小项目来检验我们的学习效果 xff0c 将所学的基础语法串联起来 xff0c 同时也熟悉一下用这门语言做项目的大概流程 但是此时学习的项目不能太复杂 xff0c 因此此时才刚学完基础语
  • java集合中接口和类的理

    一 背景 首先我们可以先了解一下类和接口的基础和使用方法 xff1a Java类和对象 java中接口 xff08 interface xff09 详解 Java继承和多态 然后再对java集合的基础了解一下 Java集合 泛型和枚举 有了
  • java多线程详解

    文章目录 多线程基础进程进程 vs 线程多线程 创建新线程线程的优先级练习小结 线程的状态小结 中断线程小结 守护线程练习小结 线程同步不需要synchronized的操作小结 同步方法小结 死锁死锁练习小结 转载于 xff1a https